Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.824 Distributed System Engineering: Fall 2007

Quiz Il

All problems are open-ended questions. In order to receiditcyou must answer the question
as precisely as possible. This quiz is designed to be tak&d iminutes, but you can take 110.

Write your name on this cover sheet AND at the bottom of eagfe jd this booklet.

Some questions may be much harder than others. Read themoaigjh first and attack them jin
the order that allows you to make the most progress. If youdiggiestion ambiguous, be sure
to write down any assumptions you make. Be neat. If we cardetstand your answer, we can’t
give you credit!

THIS IS AN OPEN BOOK, OPEN NOTES QUIZ.

I (xx/10) | I (xx/15) | Il (xx/10) | IV (xx/20) | V (xx/20) | VI (xx/20) | VIl (xx/5) | Total (xx/100)

Name:



10

£
l

Grade histogram for Quiz 2

il

51-55

56-60 61-65 66-70 71-75 76-80 81-85 86-90 91-95 96-100

Average: 82.7



6.824 FALL 2007, Quiz 2 Page 3 of 11

| Logging

1. [5 points]: Why do Frangipani servers (as described in the paper “FHpangi A scalable dis-
tributed file system” by Thekkath et al.) keep a private lodPetal? If a client creates a file, writes
some data, and then closes the file, what does Frangipardrgearabout the state of the file system
after recovery if a server fails during this set of operat@iiBriefly explain.)

Servers keep a private log in Petal so that if they crash, lagoserver can use that log to recover

the file system state being modified by the failed server.dipani guarantees nothing about the file
data, as this is not logged. It does guarantee that for thesfiigtem meta-data, all operations that
were written out successfully to Petal will be applied in Haene order they were executed in. But it
makes no guarantees about the atomicity of the operations.

2. [5 points]: The design of YFS is inspired by Frangipani, though it dgfer several important
ways. For the same sequence of operations as in the previestian, what does YFS (as specified
through lab 8, not including any lab 9 extensions) guaraatemit the state of the file system in the
presence of server failures? (Briefly explain.)

YFS guarantees nothing about the state of the file systentladterash, since there is no mechanism
for recovery. Furthermore, there’s not even a requirembat ¥ FS store its data on disk, so an extent
server crash could wipe out all data.

Name:



6.824 FALL 2007, Quiz 2 Page 4 of 11

Il Replicated state machine

Ben Bitdiddle observes that reading the list of servers tbattitute the replication state machine from a
file is lame. He proposes that next year’s lab 7 use a plan shsitripler than Paxos but less lame than a
configuration file. Ben’s proposed plan is:

e As in lab 7, the replicated state machine has a master sdrateistarts first. It assigns sequence
numbers to each client request to be processed by the sémvrs replicated state machine. The
master processes a client’s request after all slaves havegsed the request and then sends a response
to the client.

e \When a new server starts, it joins the replicated state madby sending a join request to the master.

e The master sends a join message to all the existing slavhs ireplicated state machine. The master
stamps this message with the next unused sequence nunieeottlier client requests) so that all
slaves can process the message in the same global order.

e The slaves process the join message when its turn in thelglater comes up, and add the node to
the list of servers that constitute the replicated statehnac (Servers ignore duplicate join requests.)

e When all slaves have processed the join message, the mespends to the joiner with an OK re-
sponse, including the sequence number for the next messalge global order, a list of servers that
constitute the replicated state machine, and the mastaté&s s

e On receiving the response from the master, the joining seipdates its list of nodes, initializes its
sequence number, installs the state, and listens for themessage in the global order from the
master.

e The master processes concurrent client requests serially.

e Failed servers (including the master) are handled as in.lab 7

Name:



6.824 FALL 2007, Quiz 2 Page 5 of 11

3. [8 points]: Assume server failures happen only between processing oiguests (i.e., the master
processes each client request, including joins, sucdBgsdnd that network partitions don’t happen.
Is it important that the join messages are globally ordergd m@spect to other client requests? (Ex-
plain briefly.)

No, having join messages be globally ordered with respettidmther client operations is not impor-
tant. By processing requests serially until they are comeplethe master ensures that the messages
are processed in some global order, and by assumption inribllggm statement the master cannot
fail while processing a request. This guarantees all slavidlssee the join before the master crashes.

4. [7 points]: In lab 8, failures (including network partitions) may happ any time. Could we
have used Ben'’s protocol in lab 8 to add new servers to theatpd state machine (instead of using
Paxos)? (Explain briefly.)

No. In this case, the master can die at any time, notably vitiBgorocessing joins. Thus, a join mes-
sage could reach only a subset of the other replicas, whicido@sult in the new master not having
learned about the new node (even though some other repliagsknow about it). Furthermore, the
new node will not have gotten a response from the master, dhdotvbelieve it is in the current view
—even if some subset of the replicas have elected it master!

Name:



6.824 FALL 2007, Quiz 2 Page 6 of 11

Two-phase commit

5. [5 points]: Argus (as described in the paper “Guardians and Actiongguigtic Support for Ro-
bust, Distributed Programs” by Liskov and Scheifler) pregdhe programmer with a strong version
of at-most-oncgemote method invocation: if the invocation times out oures a connection error,
the program can be sure that the remote handler was not ihvikeese semantics seem ideal but are
typically not provided by systems (e.g., YFS, Java RMI, &IrRPC, etc.) because it is a challenge
for these systems to tell whether a remote server failed bgfore it processed a request or right
after. How did the Argus designers overcome this challemgepaovide at-most-once RPC? (Explain
briefly.)

An RPC is implemented as a sub-action in Argus, so when tlversside invokes the handler, any

effects on the object’s state are applied to a copy of thecbbjehese effects won't be committed to
the primary version of the object until the client receivassgponse and the top-level action commits.
If the reply doesn’'t happen successfully for any reasonRRE can abort and its effects will not be

seen by the program.

6. [5 points]: What is a down side of the Argus solution? (Explain briefly.)

This requirement makes Argus significantly more complex ¢haystem like YFS, as the RPC layer
now must log state to disk, and have some way of rolling baekgds on the receiver if the sub-
action fails to commit. There is also a performance hit, sian RPC now requires two rounds of
communication (the two-phase commit that implements thestion) rather than just one.

Name:



6.824 FALL 2007, Quiz 2 Page 7 of 11
IV Paxos

Attached as an appendix to the quiz is the pseudocode foratkasRalgorithm that you implemented in lab
8.

7. [7 points]: In phase 2 the leader must receive responses from a majbritdes invi ews[ vi d_h] .
Would responses from exactly half of the nodevirews|[ vi d_h] be sufficient? (Give a brief ex-
planation and illustrate your answer with a scenario.)

There are two answers to this question: yes and no. If younasghat all phases can now proceed
after hearing responses from only halfafews[ vi d_h] , then the answer is no, because the network
could partition the set of nodes in half, resulting in mukifeaders getting elected. If there are four
nodes in a system, and a network failure partitions comnatiuio such there are two groups of two
nodes each and the groups cannot communicate with each titearboth groups can elect separate
leaders since they each consist of half the nodes.

However, if you assume that phase 3 still requires a majaffitgsponses fromi ews[ vi d_h] , then

it is fine to have fewer responses in phase 2. This will pretrenteader from being able to send out
decide messages, and will require Paxos to abort and restart

8. [7 points]: Consider a round of Paxos initiated by a leader that wishesidoa new node to the
current view. In phase 2, would it be sufficient if half of thedes invi ews[ vi d_h] plus the new
member that will be part of the next view responded? (Giveief lexplanation and illustrate your
answer with a scenario.)

No, the majority must be from the previous view. As in the “answer to the last question, a network

partition into two equal-sized groups would allow each halédd a different joining node to its view,
if two nodes joined the network on different sides of theitant

Name:



6.824 FALL 2007, Quiz 2 Page 8 of 11

Name:

9. [6 points]: In phase 1 why does the response to a prepare includgeandv_a? (Give a brief
explanation and illustrate your answer with a scenario.)

In phase 2, the leader must propose whatever value has begiopsly accepted in this Paxos round
with the highest sequence number (by invariant P2 in Lan'gptPaxos Made Simple” paper). If the
previous leader dies without initiating phase 3, the neatlker must propose the same value. However
it might only be able to learn about it from some other noddrduphase 1; thus the information must
be included in the response during phase 1.



6.824 FALL 2007, Quiz 2 Page 9 of 11

V SUNDR

10. [10 points]: The strawman design in the SUNDR paper (“Secure Untrustea Rapository” by
Li et al.) stores fetch operations in the log (which don't nfipdlata). Why are the fetch operations
stored in the log? Give a brief explanation and illustrataryanswer with an attack that will violate
fork consistency if SUNDR didn't store fetches in the log.

If SUNDR didn't store fetch operations, then modify openmadi that depend on a previous fetch
operation could be merged into the view of a client that mayehareviously seen a different fetch
operation. Here’s a specific example:

— File F1 has been modified twice: Fand Fl,.
— Client C1 fetches Fl
— Client C2 fetches Fil
— Client C1 modifies F1, creating version £1
— Client C2 fetches Fil

The problem here is that C1 and C2 were forked (which is althwehen the server showed them
different versions of the file, but by the end they are merge#t tbgether again. Thus when C2 reads
the version of the file, it has no idea that C1 has made its neatiifins based on the old version of a
file, and this violates fork consistency.

One common incorrect answer stated that the server coulal shdient version 2 of the file, and then

at some later point in time show the same client version héfd were no intervening writes). This

is simply a fork attack, but from the point of a view of a singlent (imagine the client rebooted and

lost all state between the two fetches).

11. [10 points]: Clients in the strawman design sign new log entries. Thisatige covers all the
previous entries that the new entry depends on. Why areesrdigned? Why does the signature cover
preceding entries? Give a brief explanation and illustyate answer with an attack that will violate
fork consistency if SUNDR's signatures didn’t cover preaogcentries.

Entries are signed to guarantee that the client created theye and that it has not been forged
by the server. The signature covers preceding entries soctlents can detect whether the server
subsequently drops any entries from the log — this woulde#us signature on entries following the
missing entry to be incorrect, and thus the client would kitioat the server is cheating.

Name:



6.824 FALL 2007, Quiz 2 Page 10 of 11

VI BFT

Phil Tollerenz thinks the Practical BFT algorithm (as désemul in the paper “Practical Byzantine Fault
Tolerance” by Castro and Liskov) is too heavyweight, and$ofor some optimizations. He wants to
toleratef Byzantine failures, and he plans to run it on a lossy netwioak ¢an arbitrarily re-order and delay
messages.

12. [10 points]: Phil’s first thought is that a majority of correct nodes shiobe sufficient for
agreement, and ponders running his system with oifilyl2replicas. Briefly explain how this could
lead to incorrect behavior.

Nodes that exhibit Byzantine failures can decide to arhbiyradelay their responses, or decline to
respond at all. Since BFT is designed to run in an asynchrenoetwork, it is impossible to tell
network delays apart from these Byzantine failures. Thusrder to toleratef actual failures, BFT
needs to be prepared to handle an additiofialetwork delays. Therefore, it requireg 8L replicas.
Imagine thatf = 1, so that with Phil's change there would be 3 nodes in the sys#®, B, and
C). If the network delays the response from C for an arbityalong time, and B is malicious, then
no quorum of non-Byzantine nodes is possible, even thowgh #re onlyf Byzantine failures in
the system. Note that A cannot tell that C is not maliciousthwlding its response, so from A’'s
perspective it is entirely possible that B is acting Byzasti

13. [10 points]: Phil wonders whether he can safely save bandwidth by elitnignany all-to-all
communication in the BFT protocol. Instead of having a plbroadcast its messages to all other
replicas in the system, it will send its messages only to tivagry. Briefly explain how this could
lead to incorrect behavior.

If the master acts maliciously, it could easily hide resgansom some of the replicas when it starts
the next round of the protocol. If the replicas never commatei with each other correctly, there is
no way for them to identify that the master is misbehaving.

Name:



6.824 FALL 2007, Quiz 2 Page 11 of 11

VIl 6.824

14. [3 points]: Katabi et al. describe their experiences with a distribdiledsystem in the Ana-
logicFS paper; however, in many ways YFS is a much more retgythan AnalogicFS, which has
been widely regarded as “fake” by its many critics. What hgwve learned from building YFS that
less experienced programmers like Leopold Katabi and RueiaRnight miss out on?

To quote one student’s response: “Something tells me theatt enth all their impressive talk, Katabi
et al. don’t have any real code to show for it”

15. [2 points]: Did you learn anything in 6.824? Please give a score on a foate0 (nothing) to
10 (more than | had hoped for), and briefly explain.

11.

End of Quiz Il—Enjoy the break!

Name:



