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Abstract

Munin is a distributed shared memory (DSM) system

that allows shared memory parallel programs to be ex-

ecuted efficiently on distributed memory multiproces-

sors. Munin is unique among existing DSM systems in

its use of multiple consistency protocols and in its use of

release consistency. In Munin, shared program variables

are annotated with their expected access pattern, and

these annotations are then used by the runtime system

to choose a consistency protocol best suited to that ac-

cess pat tern. Release consistency allows Munin to mask

network latency and reduce the number of messages

required to keep memory consistent. Munin’s multi-

protocol release consistency is implemented in software

using a delayed update queue that buffers and merges

pending outgoing writes. A sixteen-processor proto-

type of Munin is currently operational. We evaluate

its implementation and describe the execution of two

Munin programs that achieve performance within ten

percent of message passing implemental ions of the same

programs. Munin achieves this level of performance

with only minor annotations to the shared memory pro-

grams.

1 Introduction

A distributed shared memory (DSM) system provides

the abstraction of a shared address space spanning
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the ~rocessors of a distributed memory multiproces-

sor. - This abstraction simplifies the programming of

distributed memory multiprocessors and allows paral-

lel programs written for shared memory machines to be

ported easily. The challenge in building a DSM sys-

tem is to achieve good performance without requiring

the programmer to deviate significantly from the con-

vent ional shared memory programming model. High

memory latency and the high cost of sending messages

make this difficult.

To meet this challenge, Munin incorporates two

novel feat ures. First, Munin employs multipte con-

sistency protocols. Each shared variable declaration

is annotated by its expected access pattern. Munin

then chooses a consistency protocol suited to that pat-

tern. Second, Munin is the first software DSM system

that provides a release-consistent memory interface [19].

Roughly speaking, release consistency requires memory

to be consistent only at specific synchronization points,

resulting in a reduction of overhead and number of mes-

sages.

The Munin programming interface is the same as

that of conventional shared memory parallel program-

ming systems, except that it requires (i) all shared vari-

able declarations to be annotated with their expected

access pattern, and (ii) all synchronization to be vis-

ible to the runtime system. Other than that, Munin

provides thread, synchronization, and data sharing fa-

cilities like those found in shared memory parallel pro-

gramming systems [7].

We report on the performance of two Munin

programs: Matrix Multiply and Successive Over-

Relaxation (SOR). We have hand-coded the same pro-

grams on the same hardware using message passing,

taking special care to ensure that the two versions of

each program perform identical computations. Com-

parison between the Munin and the message passing

versions has allowed us to assess the overhead associ-

ated with our approach. This comparison is encour-

aging: the performance of the Munin programs differs

from that of the hand-coded message passing programs

by at most ten percent, for configurations from one to

sixteen processors.
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The Munin prototype implementation consists of

four parts: a simple preprocessor that converts the pro-

gram annotations into a format suitable for use by the

Munin runtime system, a modified linker that creates

the shared memory segment, a collection of library rou-

tines that are linked into each Munin program, and op-

erating system support for page fault handling and page

table manipulation. This separation of functionality

has resulted in a system that is largely machine- and

language-independent, and we plan to port it to vari-

ous other platforms and languages. The current proto-

type is implemented on a workstation-based distributed

memory multiprocessor consisting of 16 SUN-3/60s con-

nected by a dedicated 10 Mbps Ethernet. It makes use

of a version of the V kernel [11] that allows user threads

to handle page faults and to modify page tables.

A preliminary Munin design paper has been pub-

lished previously [5], as well as some measurements on

shared memory programs that corroborate the basic de-

sign [6]. This paper presents a refinement of the design,

and then concentrates on the implementation of Munin

and its performance.

2 Munin Overview

2.1 Munin Programming

Munin programmers write parallel programs using

threads, as they would on a shared memory mul-

tiprocessor [7]. Munin provides library routines,

CreateThread( ) and Destroy Thread( ), for this pur-

pose. Any required user initialization is performed by a

sequential user. init ( ) routine, in which the program-

mer may also specify the number of threads and proces-

sors to be used. Similarly, there is an optional sequential

user-done ( ) routine that is run when the computation

has finished. Munin currently does not perform any

thread migration or global scheduling. User threads are

run in a round robin fashion on the node on which they

were created.

A Munin shared object corresponds to a single shared

variable, although like Emerald [9], the programmer can

specify that a collection of variables be treated as a sin-

gle object or that a large variable be treated as a num-

ber of independent objects by the runtime system. By

default, variables larger than a virtual memory page

are broken into multiple page-sized objects. We use

the term “object” to refer to an object as seen by the

runtime system, i.e., a program variable, an 8-kilobyte

(page-sized) region of a variable, or a collection of vari-

ables that share an 8-kilobyte page. Currently, Munin

only supports statically allocated shared variables, al-

though this limitation can be removed by a minor mod-

ification to the memory allocator. The programmer an-

notates the declaration of shared variables with a shar-

ing pattern to specify the way in which the variable is

expected to be accessed. These annotations indicate to

the Munin runtime system what combination of proto-

cols to use to keep shared objects consistent (see Sec-

tion 2.3).

Synchronization is supported by library rou-

tines for the manipulation of locks and barri-

ers. These library routines include Crest.eLock( ),

AcquireLock( ), ReleaseLock( ), CreateBarrier( ),

and WaitAtBarrier ( ). All synchronization operations

must be explicitly visible to the runtime system (i.e.,

must use the Munin synchronization facilities). This

restriction is necessary for release consistency to oper-

ate correctly (see Section 2.2).

2.2 Software Release Consistency

Release consistency was introduced by the DASH sys-

tem. A detailed discussion and a formal definition can

be found in the papers describing DASH [19, 23]. We

summarize the essential aspects of that discussion.

Release consistency requires that each shared mem-

ory access be classified either as a synchronization ac-

cess or an ordinary access.1 Furthermore, each syn-

chronization accesses must be classified as either a re-

iease or an acquire. Intuitively, release consistency re-

quires the system to recognize synchronization accesses

as special events, enforce normal synchronization order-

ing requirements,2 and guarantee that the results of all

writes performed by a processor prior to a release be

propagated before a remote processor acquires the lock

that was released.

More formally, the following conditions are required

for ensuring release consistency:

1.

2.

3.

Before an ordinary load or store is allowed to per-

form with respect to any other processor, all previ-

ous acquires must be performed.

Before a release is allowed to perform with respect

to any other processor, all previous ordinary loads

and stores must be performed.

Before an acquire is allowed to perform with respect

to any other processor, all prev;ous releases must be

performed. Before a release is allowed to perform

with respect to any other processor, all previous

acquires and releases must be performed.

The term ‘(all previous accesses” refers to all accesses

by the same thread that precede the current access in

program order. A load is said to have “performed with

1We ignore chaotic data [19] in this presentation.

2For ~x=ple, only one thread can acquire a lock at a time, ~d a

thread attempting to acqnire a lock must block until the acquire

is successful.
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respect to another processor” when a subsequent store

on that processor cannot affect the value returned by

the load. A store is said to have “performed with re-

spect to another processor” when a subsequent load by

that processor will return the value stored (or the value

stored in a later store). Aloador a store is said to have

“performed” when it has performed with respect to all

other processors.

Previous DSM systems [3,10,17,25,27] are based

on sequential consistency [22]. Sequential consistency

requires, roughly speaking, that each modification to a

shared object become visible immediately to the other

processors in the system. Release consistency postpones

until the next release the time at which updates must

become visible. This allows updates to be buffered until

that time, and avoids having to block a thread until it is

guaranteed that its current update has become visible

everywhere. Furthermore, if multiple updates need to

go to the same destination, they can be coalesced into

a single message. The use of release consistency thus

allows Munin to mask memory access latency and to

reduce the number of messages required to keep memory

consistent. This is important on a distributed memory

multiprocessor where remote memory access latency is

significant, and the cost of sending a message is high.

To implement release consistency, Munin requires

that all synchronization be done through system-

supplied synchronization routines. We believe this is

not a major constraint, as many shared memory paral-

lel programming environments already provide efficient

synchronization packages. There is therefore little in-

tent ive for programmers to implement separate mecha-

nisms. Unlike DASH, Munin does not require that each

individual shared memory access be marked.

Gharachorloo et al. [16, 19] have shown that a large

class of programs, essentially programs with “enough”

synchronization, produce the same results on a release-

consistent memory as on a sequentially-consistent mem-

ory. Munin’s multiple consistency protocols obey the or-

dering requirements imposed by release consistency, so,

like DASH programs, Munin programs with “enough”

synchronization produce the same results under Munin

as under a sequentially-consistent memory. The expe-

rience with DASH and Munin indicates that almost all

shared memory parallel programs satisfy this criterion.

No modifications are necessary to these programs, other

than making all synchronization operations utilize the

Munin synchronization facilities.

2.3 Multiple Consistency Protocols

Several studies of shared memory parallel programs

have indicated that no single consistency protocol is

best suited for all parallel programs [6, 14, 15]. Further-

more, within a single program, different shared variables

are accessed in different ways and a particular variable’s

access pattern can change during execution [6].

Munin allows a separate consistency protocol for

each shared variable, tuned to the access pattern of

that particular variable. Moreover, the protocol for a

variable can be changed over the course of the execu-

tion of the program. Munin uses program annotations,

currently provided by the programmer, to choose a con-

sistency protocol suited to the expected access pattern

of each shared variable.

The implementation of multiple protocols is divided

into two parts: high-level sharing pattern annotations

and low-level protocol parameters. The high-level an-

notations are specified as part of a shared variable dec-

laration. These annotations correspond to the expected

sharing pat tern for the variable. The current prototype

supports a small collection of these annotations that

closely correspond to the sharing patterns observed in

our earlier study of shared memory access patterns [6].

The low-level protocol parameters control specific as-

pects of the individual protocols, such as whether an

object may be replicated or whether to use invalidation

or update to maintain consistency, In Section 2.3.1,

we discuss the low-level protocol parameters that can

be varied under Munin, and in Section 2.3.2 we discuss

the high-level sharing patterns supported in the current

Munin prototype.

2.3.1 Protocol Parameters

Munin’s consistency protocols are derived by varying

eight basic protocol parameters:

● Invalidate or Update? (I) This parameter spec-

ifies whether changes to an object should be propa-

gated by invalidating or by updating remote copies.

● Replicas allowed? (R) This parameter specifies

whether more than one copy of an object can exist

in the system.

● Delayed operations allowed? (D) This param-

eter specifies whether or not the system may delay

updates or invalidations when the object is modi-

fied.

● Fixed owner? (FO) This parameter directs

Munin not to propagate ownership of the object.

The object may be replicated on reads, but all

writes must be sent to the owner, from where they

may be propagated to other nodes.

● Multiple writers allowed? (M) This parame-

ter specifies that multiple threads may concurrently

modify the object with or without intervening syn-

chronization.
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Stable sharing pattern? (S) This parameter in-

dicates that the object has a stable access pattern,

i.e., the same threads access the object in the same

way during the entire execution of the program. If

a different thread attempts to access the object,

Munin generates a runtime error. For stable shar-

ing patterns, Munin always sends updates to the

same nodes. This allows updates to be propagated

to nodes prior to these nodes requesting the data.

Flush changes to owner? (Fl) This parameter

directs Munin to send changes only to the object’s

owner and to invalidate the local copy whenever

the local thread propagates changes.

Writ able? (W) This parameter specifies whether

the shared object can be modified. If a write is at-

tempted to a non-writable object, Munin generates

a runtime error.

2.3.2 Sharing Annotations

Sharing annotations are added to each shared variable

declaration, to guide Munin in its selection of the pa-

rameters of the protocol used to keep each object con-

sistent. While these annotations are syntactically part

of the variable’s declaration, they are not programming

language types, and as such they do not nest or cause

compile-time errors if misused. Incorrect annotations

may result in inefficient performance or in runtime er-

rors that are detected by the Munin runtime system.

Read-only objects are the simplest form of shared

data. Once they have been initialized, no further up-

dates occur. Thus, the consistency protocol simply con-

sists of replication on demand. A runtime error is gener-

ated if a thread attempts to write to a read-only object.

For migratory objects, a single thread performs

multiple accesses to the object, including one or more

writes, before another thread accesses the object [29].

Such an access pattern is typical of shared objects that

are accessed only inside a critical section. The consis-

tency protocol for migratory objects is to migrate the

object to the new thread, provide it with read and write

access (even if the first access is a read), and invalidate

the original copy. This protocol avoids a write miss

and a message to invalidate the old copy when the new

thread first modifies the object.

Write-shared objects are concurrently written by

multiple threads, without the writes being synchro-

nized, because the programmer knows that the updates

modify separate words of the object. However, because

of the way that objects are laid out in memory, there

may be false sharing. False sharing occurs when two

shared variables reside in the same consistency unit,

such as a cache block or a virtual memory page. In sys-

tems that do not support multiple writers to an object,

the consistency unit may be exchanged between proces-

sors even though the processors are accessing different

objects.

Producer-consumer objects are written (pro-

duced) by one thread and read (consumed) by one or

more other threads. The producer-consumer consis-

tency protocol is to replicate the object, and to update,

rather than invalidate, the consumer’s copies of the ob-

ject when the object is modified by the producer. This

eliminates read misses by the consumer threads. Re-

lease consistency allows the producer’s updates to be

buffered until the producer releases the lock that pro-

tects the objects. At that point, all of the changes can

be passed to the consumer threads in a single mes-

sage. Furthermore, producer-consumer objects have

stabie sharing relationships, so the system can deter-

mine once which nodes need to receive updates of an

object, and use that information thereafter. If the shar-

ing pattern changes unexpectedly, a runtime error is

generated.

Reduction objects are accessed via Fetch_ and_@

operations. Such operations are equivalent to a lock ac-

quisition, a read followed by a write of the object, and

a lock release. An example of a reduction object is the

global minimum in a parallel minimum path algorithm,

which would be maintained via a Fetch_ and_min. Re-

duction objects are implemented using a fixed-owner

protocol.

Result objects are accessed in phases. They are

alternately modified in parallel by multiple threads, fol-

lowed by a phase in which a single thread accesses them

exclusively. The problem with treating these objects as

standard write-shared objects is that when the multiple

threads complete execution, they unnecessarily update

the other copies. Instead, updates to result objects are

sent back only to the single thread that requires exclu-

sive access.

Conventional objects are replicated on demand

and are kept consistent by requiring a writer to be the

sole owner before it can modify the object. Upon a

write miss, an invalidation message is transmitted to

all other replicas. The thread that generated the miss

blocks until it has the only copy in the system [24]. A

shared object is considered conventional if no annot a-

tion is provided by the programmer.

The combination of protocol parameter settings for

each annotation is summarized in Table 1.

New sharing annotations can be added easily by

modifying the preprocessor that parses the Munin pro-

gram annotations. For instance, we have consid-

ered supporting an invalidation-based protocol with

delayed invalidations and multiple writers, essentially

invalidation-based write-shared objects, but we have

chosen not to implement such a protocol until we en-

counter a need for it.
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Sharing Parameter Settinm
I

Annotation IR D FO M s F1 w

Read-only NY - - - - - N

Migratory YN - N N - N Y

Write-shared NY Y N Y N N Y

Producer-Consumer NY Y N Y Y N Y

Reduction NY N Y N - N Y

Result NY Y Y Y - Y Y

Conventional YY N N N - N Y

Table 1 Munin Annotations and

Corresponding Protocol Parameters

2.4 Advanced Programming

For Matrix Multiply and Successive Over-Relaxation,

the two Munin programs discussed in this paper, sim-

ply annotating each shared variable’s declaration with

a sharing pat t em is sufficient to achieve performance

comparable to a hand-coded message passing version.

Munin also provides a small collection of library rou-

tines that allow the programmer to fine-tune various

aspects of Munin’s operation. These “hints” are op-

tional performance optimizations.

In Munin, the programmer can specify the logi-

cal connections between shared variables and the syn-

chronization objects that protect them [27]. Cur-

rently, this information is provided by the user using an

As sociat eDat aAndSynch ( ) call. If Munin knows which

objects are protected by a particular lock, the required

consistency information is included in the message that

passes lock ownership. For example, if access to a par-

ticular object is protected by a particular lock, such as

an object accessed only inside a critical section, Munin

sends the new value of the object in the message that

is used to pass lock ownership. This avoids one or more

access misses when the new lock owner first accesses the

protected data.

The PhaseChange ( ) library routine purges the ac-

cumulated sharing relationship information (i.e., what

threads are accessing what objects in a producer-

consumer situation). This call is meant to support

adaptive grid or sparse matrix programs in which

the sharing relationships are stable for long periods

of time between problem re-distribution phases. The

shared matrices can be declared producer-consumer,

which requires that the sharing behavior be stable, and

PhaseChange ( ) can then be invoked whenever the shar-

ing relationships change.

ChangeAnnotat ion( ) modifies the expected shar-

ing pattern of a variable and hence the protocol used

to keep it consistent. This lets the system adapt to

dynamic changes in the way a particular object is ac-

cessed. Since the sharing pattern of an object is an in-

dication to the system of the consistency protocol that

should be used to maintain consistency, the invocation

of ChangeAnnot at ion( ) may require the system to per-

form some immediate work to bring the current state of

the object up-to-date with its new sharing pattern.

Invalidate ( ) deletes the local copy of an object,

and migrates it elsewhere if it is the sole copy or updates

remote copies with any changes that may have occurred.

Flush( ) advises Munin to flush any buffered writes

immediately rather than waiting for a release.

SingleObj ect ( ) advises Munin to treat a large

(multi-page) variable as a single object rather than

breaking it into smaller page-sized objects.

Finally, PreAcquire ( ) advises Munin to acquire a

local copy of a particular object in anticipation of fu-

ture use, thus avoiding the latency caused by subsequent

read misses.

3 Imp

3.1 Ovel

ementation

view

Munin executes a distributed directory-based cache con-

sistency protocol [1] in software, in which each directory

entry corresponds to a single object. Munin also im-

plements locks and barriers, using a distributed queue-

based synchronization protocol [20, 26].

During compilation, the sharing annotations are

read by the Munin preprocessor, and an auxiliary file

is crested for each input file. These auxiliary files are

used by the linker to create a shared data segment and

a shared data description table, which are appended to

the Munin executable file. The program is then linked

with the Munin runtime library.

When the application program is invoked, the Munin

root thread starts running. It initializes the shared

data segment, creates Munin worker threads to han-

dle consistency and synchronization functions, and reg-

isters itself with the kernel as the address space’s

page fault handler (as is done by Mach’s external

pagers [28]). It then executes the user initialization rou-

tine us er-init ( ), spawns the number of remote copies

of the program specified by us er–init (), and initializes

the remote shared data segments. Finally, the Munin

root thread creates and runs the user root thread. The

user root thread in turn creates user threads on the re-

mote nodes.

Whenever a user thread has an access miss or ex-

ecutes a synchronization operation, the Munin root

thread is invoked. The Munin root thread may call

on one of the local Munin worker threads or a remote

Munin root thread to perform the necessary operations.

Afterwards, it resumes the user thread.

156



3.2 Data Object Directory

The data object directory within each Munin node

maintains information about the state of the global

shared memory. This directory is a hash table that

maps an address in the shared address space to the en-

try that describes the object located at that address.

The data object directory on the Munin root node is

initialized from the shared data description table found

in the executable file, whereas the data object directory

on the other nodes is initially empty. When Munin can-

not find an object directory entry in the local hash table,

it requests a copy from the object’s home node, which

for statically defined objects is the root node. Object

directory entries contain the following fields:

Start address and Size: used as the key for look-

ing up the object’s directory entry in a hash table,

given an address within the object.

Protocol parameter bits: represent the protocol

parameters described in Section 2.3.1.

Object state bits: characterize the dynamic

state of the object, e.g., whether the local copy is

valid, writable, or modified since the last flush, and

whether a remote copy of the object exists.

Copyset: used to specify which remote processors

have copies of the object that must be updated

or invalidated. For a small system, such as our

prototype, a bitmap of the remote processors is

sufficient.3

S ynchq (optional): a pointer to the synchroniza-

tion object that controls access to the object (see

Section 2.4).

Probable owner (optional): used as a “best

guess” to reduce the overhead of determining the

identity of the Munin node that currently owns

the object [24]. The identity of the owner node is

used by the ownership-based protocols (migratory,

convent ional, and reduction), and is also used

when an object is locked in place (reduction) or

when the changes to the object should be flushed

only to its owner (result).

Home node (optional): the node at which the ob-

ject was created. It is used for a few record keeping

functions and as the node of last resort if the sys-

tem ever attempts to invalidate all remote copies

of an object.

‘This approach does not scale well to larger systems, but an ear-
lier study of parallel programs suggests that a processor list is
often quite short [29]. The common exception to this rule oc-

curs when an object is shared by every processor, and a special

A1l-Iiodes value can be used to indicate this case.

● Access control semaphore: provides mutually

exclusive access to the object’s directory entry.

● Links: used for hashing and enqueueing the ob-

ject’s directory entry.

3.3 Delayed Update Queue

The delayed update queue (DUQ) is used to buffer pend-

ing outgoing write operations as part of Munin’s soft-

ware implement ation of release consistency. A write to

an object that allows delayed updates, as specified by

the protocol parameter bits, is stored in the DUQ. The

DUQ is flushed whenever a local thread releases a lock

or arrives at a barrier.

Munin uses the virtual memory hardware to detect

and enqueue changes to objects. Initially, and after each

time that the DUQ is flushed, the shared objects han-

dled by the DUQ are write-protected using the virtual

memory hardware. When a thread first attempts to

write to such an object, the resulting protection fault

invokes Munin. The object’s directory entry is put on

the DUQ, write-protection is removed so that subse-

quent writes do not experience consistency overhead,

and the faulting thread is resumed. If multiple writers

are allowed on the object, a copy (twin) of the object is

also made. This twin is used to determine which words

within the object have been modified since the last up-

date.

When a thread releases a lock or reaches a barrier,

the modifications to the objects enqueued on the DUQ

are propagated to their remote copies.4 The set of re-

mote copies is either immediately available in the Copy-

set in the data object directory, or it must be dynami-

cally determined. The algorithm that we currently use

to dynamically determine the Copyset is somewhat in-

efficient. We have devised, but not yet implemented, an

improved algorithm that uses the owner node to collect

Copyset information. Currently, a message indicating

which objects have been modified locally is sent to all

other nodes. Each node replies with a message indicat-

ing the subset of these objects for which it has a copy. If

the protocol parameters indicate that the sharing rela-

tionship is stable, this determination is performed only

once.

If an enqueued object does not have a twin (i.e., mul-

tiple writers are not allowed), Munin transmits updates

or invalidations to nodes with remote copies, as indi-

cated by the invalidate protocol parameter bit in the

object’s directory entry. If the object does have a twin,

Munin performs a word-by-word comparison of the ob-

ject and its twin, and run-length encodes the results of

4This is a conservative implementation of release consist ency, be-

cause the updates are propagated at the time of the release, rather

than being delayed until the release is performed (see Section 2.2).
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this “cliff” into the space allocated for the twin. Each

run consists of a count of identical words, the number

of differing words that follow, and the data associated

with those differing words. The encoded object is sent

to the nodes that require updates, where the object is

decoded and the changes merged into the original ob-

ject. If a Munin node with a dirty copy of an object

receives an update for that object, it incorporates the

changes immediately. If a Munin node with a dirty copy

of an object receives an invalidation request for that ob-

ject and multiple writers are allowed, any pending local

updates are propagated. Otherwise, a runtime error is

generated.

This approach works well when there are multiple

writes to an object between DUQ flushes, which allows

the expense of the copy and subsequent comparison to

be amortized over a large number of write accesses. Ta-

ble 2 breaks down the time to handle updates to an

8-kilobyte object through the DUQ. This includes the

time to handle a fault (including resuming the thread),

make a copy of the object, encode changes to the ob-

ject, transmit them to a single remote node, decode

them remotely, and reply to the original sender. We

present the results for three different modification pat-

terns. In the first pattern, a single word within the

object has changed. In the second, every word in the

object has changed. In the third, every other word has

changed, which is the worst case for our run-length en-

coding scheme because there are a maximum number of

minimum-length runs.

We considered and rejected two other approaches for

implementing release consistency in software:

1.

2.

Force the thread to page fault on every write to a

replicated object so that the modified words can be

queued as they are accessed.

Have the compiler add code to log writes to repli-

cated objects as part of the write.

Component

Handle Fault

Copy object

Encode object

Transmit object

Decode object

Reply

One

Word

2.01

1.15

3.07

1.72

3.12

2.27

All

Words

2.01

1.15

4.79

12.47

4.86

2.27

Alternate

Words

2.01

1.15

6.57

12.47

6.68

2.27

Total 13.34 27.55 31.15

Table 2 Time to Handle an 8-kilobyte

Object through DUQ (msec.)

The first approach works well if an object is only modi-

fied a small number of times between DUQ flushes, or if

the page fault handling code can be made extremely

fast. Since it is quite common for an object to be

updated multiple times between DUQ flushes [6], the

added overhead of handling multiple page faults makes

this approach generally unacceptable. The second ap-

proach was used successfully by the Emerald system [9].

We chose not to explore this approach in the prototype

because we have a relatively fast page fault handler,

and we did not want to modify the compiler. This ap-

proach is an attractive alternative for systems that do

not support fast page fault handling or modification of

virtual memory mappings, such as the iPSC-i860 hy-

percube [12]. However, if the number of writes to a

particular object between DUQ flushes is high, as is of-

ten the case [6], this approach will perform relatively

poorly because each write to a shared object will be

slowed. We intend to study this approach more closely

in future system implement at ions.

3.4 Synchronization Support

Synchronization objects are accessed in a fundamen-

tally different way than data objects [6], so Munin

does not provide synchronization through shared mem-

ory. Rather, each Munin node interacts with the other

nodes to provide a high-level synchronization service.

Munin provides support for distributed locks and bar-

riers. More elaborate synchronization objects, such as

monitors and atomic integers, can be built using these

basic mechanisms.

Munin employs a queue-based implementation of

locks, which allows a thread to request ownership of

a lock and then to block awaiting a reply without re-

peated queries. Munin uses a synchronization object

directory, analogous to the data object directory, to

maintain information about the state of the synchro-

nization objects. For each lock, a queue identifies the

user threads waiting for the lock, so a release-acquire

pair can be performed with a single message exchange

if the acquire is pending when the release occurs. The

queue itself is distributed to improve scalability,

When a thread wants to acquire a lock, it calls

AcquireLock ( ), which invokes Munin to find the lock in

the synchronization object directory. If the lock is local

and free, the thread immediately acquires the lock and

continues executing. If the lock is not free, Munin sends

a request to the probable lock owner to find the actual

owner, possibly requiring the request to be forwarded

multiple times. When the request arrives at the owner

node, ownership is forwarded directly to the requester

if the lock is free. Otherwise, the owner forwards the

request to the thread at the end of the queue, which

puts the requesting thread on the lock’s queue. Each

158



enqueued thread knows only the identity of the thread

that follows it on the queue. When a thread performs

an Unlock ( ) and the associated queue is non-empty,

lock ownership is forwarded directly to the thread at

the head of the queue.

To wait at a barrier, a thread calls

Wait AtBarrier ( ), which causes a message to be sent

to the owner node, and the thread to be blocked await-

ing a reply. When the Munin root thread on the owner

node has received messages from the specified number of

threads, it replies to the blocked threads, causing them

to be resumed. For future implementations on larger

systems, we envision the use of barrier trees and other

more scalable schemes [21].

4 Performance

We have measured the performance of two Munin pro-

grams, Matrix Multiply and Successive Over-Relaxation

(SOR). We have also hand-coded the same programs on

the same hardware using the underlying message pass-

ing primitives. We have taken special care to ensure

that the actual computational components of both ver-

sions of each program are identical. This section de-

scribes in detail the actions of the Munin runtime sys-

tem during the execution of these two programs, and

reports the performance of both versions of these pro-

grams. Both programs make use of the DUQ to miti-

gate the effects of false sharing and thus improve perfor-

mance. They also exploit Munin’s multiple consistency

protocols to reduce the consistency maintenance over-

head.

4.1 Matrix Multiply

The shared variables in Matrix Multiply are declared as

follows:

shared read.only int input 1 [N] [N] ;

shared read.only int input2 CNI [N] ;

shared result int output [N] [N] ;

The user-init ( ) routine initializes the input matrices

and creates a barrier via a call to Crest eBarrier ( ).

After creating worker threads, the user root thread

waits on the barrier by calling Wait AtBarrier ( ). Each

worker thread computes a portion of the output matrix

using a standard (sub) matrix multiply routine. When

a worker thread completes its computation, it performs

a Wait AtBarrier ( ) call. After all workers reach the

barrier, the program terminates. The program does not

utilize any of the optimizations described in Section 2.4.

On the root node, the input matrices are mapped

as read-only, based on the read-only annotation, and

the output matrix is mapped as read-write, based on the

r e suit annot at ion. When a worker t bread first accesses

an input matrix, the resulting page fault is handled by

the Munin root thread on that node. It acquires a copy

of the object from the root node, maps it as read-only,

and resumes the faulted thread. Similarly, when a re-

mote worker thread first writes to the output matrix, a

page fault occurs. A copy of that page of the output

matrix is then obtained from the root node, and the

copy is mapped as read-write. Since the output ma-

trix is a result object, there may be multiple writers,

and updates may be delayed. Thus, Munin makes a

twin, and inserts the output matrix’s object descriptor

in the DUQ. When a worker thread completes its com-

putation and performs a WaitAtBarrier ( ) call, Munin

flushes the DUQ. Since the output matrix is a result

object, Munin sends the modifications only to the owner

(the node where the root thread is executing), and in-

validates the local copy.

Table 3 gives the execution times of both the Munin

and the message passing implementations for multiply-

ing two 400 x 400 matrices. The System time repre-

sents the time spent executing Munin code on the root

node, while the User time is that spent executing user

code. In all cases, the performance of the Munin ver-

sion was within 10~o of that of the hand-coded message

passing version. Program execution times for represen-

tative numbers of processors are shown. The program

behaved similarly for all numbers of processors from one

to sixteen.

Since different portions of the output matrix are

modified concurrently by different worker threads, there

is false sharing of the output matrix. Munin’s provision

for multiple writers reduces the adverse effects of this

false sharing. As a result, the data motion exhibited

by the Munin version of Matrix Multiply is nearly iden-

tical to that exhibited by the message passing version.

In the Munin version, after the workers have acquired

their input data, they execute independently, without

communication, as in the message passing version. Fur-

thermore, the various parts of the output matrix are

sent from the node where they are computed to the root

node, again as in the message passing version. The only

difference between the two versions is that in Munin the

appropriate parts of the input matrices are paged in,

E
#of

Procs

1

2

4

8

16

DM

Total

753.15

378.74

192.21

101.57

66.31

Total

—

382.15

196.92

105.73

72.41

Munin

System

.

1.21

2.45

5.82

8.51
?

%

User Diff

376.24 0.9

191.26 2.5

97.31 4.1

54.19 9.2

Table 3 Performance of Matrix Multiply (sec.)
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while in the message passing version they are sent dur-

ing initialization. The additional overhead present in

the Munin version comes from the page fault handling

and the copying, encoding, and decoding of the output

matrix. In a DSM system that does not support multi-

ple writers to an object, portions of the output matrix

could “ping-pong” between worker threads.

The performance of Matrix Multiply can be opti-

mized by utilizing one of the performance optimiza-

tion discussed in Section 2.4. If Munin is told to

treat the first input array as a single object rather than

breaking it into smaller page-sized objects, via a call to

Si.ngleObj ect ( ), the entire input array is transmitted

to each worker thread when the array is first accessed.

Overhead is lowered by reducing the number of access

misses. This improves the performance of the Munin

version to within 270 of of the hand-coded message pass-

ing version. Execution times reflecting this optimization

are shown in Table 4.

4.2 Successive Over-Relaxation

SOR is used to model natural phenomena. An example

of an SOR application is determining the temperature

gradients over a square area, given the temperature val-

ues at the area boundaries. The basic SOR algorithm is

iterative. The area is divided into a grid of points, rep-

resented by a matrix, at the desired level of granularit y.

Each matrix element corresponds to a grid point. Dur-

ing each iteration, each matrix element is updated to

be the average of its four nearest neighbors. To avoid

overwriting the old value of a matrix element before

it is used, the program can either use a scratch array

or only compute every other element per iteration (so-

called “red-black” SO R). Both techniques work equally

well under Munin. Our example employs the scratch

array approach.

SOR is parallelized by dividing the area into sec-

tions and having a worker thread compute the values

for each section. Newly computed values at the section

boundaries must be exchanged with adjacent sections

at the end of each iteration. This exchange engenders a

#of

Procs

1

2

4

8

16

DM

Total

753.15

378.74

192.21

101.57

66.31

Munin

T

Total System User

. —

380.51 0.34 376.16

194.27 0.57 190.15

102.84 0.87 97.21

67.21 1.26 54.18

%

Diff

0.5

1.1

1.3

1.4

Table 4 Performance of Optimized Matrix

Multiply (sec.)

producer-consumer relationship between grid points at

the boundaries of adj scent sections.

In the Munin version of SOR, the user root thread

creates a worker thread for each section. The matrix

representing the grid is annotated as

shared producer. consumer int matrix [. ..1

The programmer is not required to specify the data par-

titioning to the runtime system. After each iteration,

worker threads synchronize by waiting at a barrier. Af-

t er all workers have completed all iterations, the pro-

gram terminates. The Munin version of SOR did not

utilize any of the optimizations described in Section 2.4.

A detailed analysis of the execution, which exempli-

fies how producer-consumer sharing is currently handled

by Munin, follows:

During the first compute phase, when the new av-

erage of the neighbors is computed in the scratch

array, the nodes read-fault in copies of the pages of

the matrix as needed.

During the first copy phase, when the newly com-

puted values are copied to the matrix, nodes write-

fault, enqueue the appropriate pages on the DUQ,

create twins of these pages, make the originals read-

write, and resume.

When the first copy phase ends and the worker

thread waits at the barrier, the sharing relation-

ships between producer and consumer are deter-

mined as described in Section 3.3. Afterwards, any

pages that have an empty Copyset, and are there-

fore private, are made locally writable, their twins

are deleted, and they do not generate further access

faults. In our SOR example, all non-edge elements

of each section are handled in this manner.

Since the sharing relationships of producer-

consumer objects are stable, after all subsequent

copy phases, updates to shared portions of the ma-

trix (the edge elements of each section) are propa-

gated only to those nodes that require the updated

data (those nodes handling adj scent sections). At

each subsequent synchronization point, the update

mechanism automatically combines the elements

destined for the same node into a single message.

Table 5 gives the execution times of both the Munin

and the message passing implement ation of 100 itera-

tions of SOR on a 512 x 512 matrix, for representative

numbers of processors. In all cases, the performance of

the Munin version was within 10% of that of the hand-

coded message passing version. Again, the program be-

haved similarly for all numbers of processors from one

to sixteen.
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F
#of DM

Procs Total

1 122.62

2 63.68

4 36.46

8 26.72

16 25.62

Munin II%
Total I System

J-
——

66.87 2.27

39.70 3.58

28.26 5.17

27.64 8.32

User

—

61.83

31.77

16.57

8.51

Diff

5.5

8.9

5.8

7.9

Table 5 Performance of SOR (sec.)

Since the matrix elements that each thread accesses

overlap with the elements that its neighboring threads

access, the sharing is very fine-grained and there is con-

siderable false sharing. After the first pass, which in-

volves an extra phase to determine the sharing relation-

ships, the data motion in the Munin version of SOR is

essentially identical to the message passing implemen-

tation. The only extra overhead comes from the fault

handling and from the copying, coding, and decoding of

the shared portions of the matrix.

4.3 Effect of Multiple Protocols

We studied the importance of having multiple protocols

by comparing the performance of the multi-protocol im-

plementation with the performance of an implementa-

tion using only convent ional or only write-shared

objects. Convent ional objects result in an ownership-

based write-invalidate protocol being used, similar to

the one implemented in Ivy [24]. We also chose

writ e-shared because it supports multiple writers and

fine-grained sharing.

The execution times for the unoptimized version of

Matrix Multiply (see Table 4) and SOR, for the previ-

ous problem sizes and for 16 processors, are presented

in Table 6. For Matrix Multiply, the use of result and

read–only sped up the time required to load the in-

put matrices and later purge the output matrix back to

the root node and resulted in a 4.4% performance im-

provement over writ e-shared and a 4.8% performance

improvement over convent ional. For SOR, the use of

producer-consumer reduced the consistency overhead,

by removing the phase in which sharing relationships

are determined for all but the first iteration. The result-

I Protocol Matrix Multiply SOR I

~

Table 6 Effect of Multiple Protocols (sec.)

ing execution time was less than half that of the imple-

mentations using only convent ional or write-shared.

The execution time for SOR using write-shared can be

improved by using an better algorithm for determining

the Copyset (see Section 3.3).

4.4 Summary

For Matrix Multiply, after initialization, each worker

thread transmits only a single result message back to

the root node, which is the same communication pattern

found in a hand-coded message passing version of the

program. For SOR, there is only one message exchange

between adjacent sections per iteration (after the first

iteration), again, just as in the message passing version.

The common problem of false sharing of large ob-

jects (or pages), which can hamper the performance of

DSM systems, is relatively benign under Munin because

we do not enforce a single-writer restriction on objects

that do not require it. Thus, intertwined access re-

gions and non-page-aligned data are less of a problem in

Munin than with other DSM systems. The overhead in-

troduced by Munin in both Matrix Multiply and SOR,

other than the determination of the sharing relation-

ships after the first iteration of SOR, comes from the

expense of encoding and decoding modified objects.

By adding only minor annotations to the shared

memory programs, the resulting Munin programs exe-

cuted almost as efficiently as the corresponding message

passing versions. In fact, during our initial testing, the

performance of the Munin programs was better than the

performance of the message passing versions. Only af-

ter careful tuning of the message passing versions were

we able to generate message passing programs that re-

sulted in the performance data presented here. This

anecdote emphasizes the difficulty of writing efficient

message passing programs, and serves to emphasize the

value of a DSM system like Munin.

5 Related Work

A number of software DSM systems have been devel-

oped [3, 8, 10, 17, 25, 27]. All, except Midway [8], use

sequential consistency [22]. Munin’s use of release con-

sistency only requires consistency to be enforced at spe-

cific synchronization points, with the resulting reduc-

tion in latency and number of messages exchanged.

Ivy uses a single-writer, write-invalidate protocol,

with virtual memory pages as the units of consis-

tency [25]. The large size of the consistency unit makes

the system prone to false sharing. In addition, the

single-writer nature of the protocol can cause a “ping-

pong” behavior between multiple writers of a shared

page. It is then up to the programmer or the compiler
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to lay out the program data structures in the shared

address space such that false sharing is reduced.

Clouds performs consistency management on a per-

object basis, or in Clouds terminology, on a per-segment

basis [27]. Clouds allows a segment to be locked by a

processor, to avoid the “ping-pong” effects that may re-

sult from false sharing. Mirage also attempts to avoid

these effects by locking a page with a certain proces-

sor for a certain A time window [17]. Munin’s use of

multiple-writer protocols avoids the adverse effects of

false sharing, without introducing the delays caused by

locking a segment to a processor.

Orca is also an object-oriented DSM system, but its

consistency management is based on an efficient reliable

ordered broadcast protocol [3]. For reasons of scalabil-

ity, Munin does not rely on broadcast. In Orca, both

invalidate and update protocols can be used. Munin

also supports a wider variety of protocols.

Unlike the designs discussed above, in Amber the

programmer is responsible for the distribution of data

among processors [10]. The system does not attempt to

automatically move or replicate data. Good speedups

are reported for SOR running on Amber. Munin auto-

mates many aspects of data distribution, and still re-

mains efficient by asking the programmer to specify the

expected access patterns for shared data variables.

Linda provides a different abstraction for distributed

memory programming: all shared variables reside in a

tuple space, and the only operations allowed are atomic

insertion, removal, and reading of objects from the tu-

ple space [18]. Munin stays closer to the more familiar

shared memory programming model, hopefully improv-

ing its acceptance with parallel programmers.

Midway [8] proposes a DSM system with entry con-

sistency, a memory consistency model weaker than re-

lease consistency. The goal of Midway is to minimize

communications costs by aggressively exploiting the re-

lationship between shared variables and the synchro-

nization objects that protect them.

Recently, designs for hardware distributed shared

memory machines have been published [2, 23]. Our

work is most related to the DASH project [23], from

which we adapt the concept of release consistency. Un-

like Munin, though, DASH uses a write-invalidate pro-

tocol for all consistency maintenance. Munin uses the

flexibility of its software implementation to also attack

the problem of read misses by allowing multiple writers

to a single shared object and by using update proto-

cols (producer-consumer, write–shared, result) and

pre-invalidation (migratory) when appropriate. The

APRIL machine takes a different approach in combat-

ting the latency problem on distributed shared memory

machines [2]. APRIL provides sequential consistency,

but relies on extremely fast processor switching to over-

lap memory latency with computation.

A technique similar to the delayed update queue

was used by the Myrias SPS multiprocessor [13]. It

performed the copy-on-write and cliff in hardware, but

required a restricted form of parallelism to ensure cor-

rectness.

Munin’s implementation of locks is similar to ex-

isting implementations on shared memory multiproces-

sors [20, 26].

An alternative approach for parallel processing on

distributed memory machines is to have the compiler

produce a message passing program starting from a se-

quential program, annotated by the programmer with

data partitions [4, 30]. Given the static nature of

compile-time analysis, these techniques appear to be re-

stricted to numerical computations with statically de-

fined shared memory access patterns.

6 Conclusions and Future Work

The objective of the Munin project is to build a DSM

system in which shared memory parallel programs exe-

cute on a distributed memory machine and achieve good

performance without the programmer having to make

extensive modifications to the shared memory program.

Munin’s shared memory is different from “real” shared

memory only in that it provides a release-consistent

memory interface, and in that the shared variables are

annotated with their expected access patterns. In the

applications that we have programmed in Munin so far,

the release-consistent memory interface has required no

changes, while the annotations have proved to be only a

minor chore. Munin programming has been easier than

message passing programming. Nevertheless, we have

achieved performance within 5–10 percent of message

passing implementations of the same applications. We

argue that this cost in performance is a small price to

pay for the resulting reduction in program complexity.

Further work on Munin will continue to examine the

tradeoff bet ween performance and programming com-

plexity. We are interested in examining whether mem-

ory consistency can be relaxed further, without neces-

sitating more program modifications than release con-

sistency. We are also considering more aggressive im-

plementation techniques, such as the use of a pending

updates queue to hold incoming updates, a dual to the

delayed update queue already in use. We also wish

to design higher-level interfaces to distributed shared

memory in which the access patterns will be determined

without user annotation. Another important issue is

Munin’s scalability in terms of processor speed, inter-

connect bandwidth, and number of processors. To ex-

plore this issue, we intend to implement Munin on suit-

able hardware platforms such as a Touchstone-class ma-

chine or a high-speed network of supercomputer work-
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stations. In this vein, we are also studying hardware

support for selected features of Munin.
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