basementdb

Key-value store with eventual consistency without trusting individual
nodes

https://github.com/Spferical /basementdb

1. Abstract

basementdb is an eventually-consistent key-value store, composed of a simple key-
value application implemented on top our implementation of the Zeno protocol
(xeno), an eventually consistent byzantine-fault tolerant replicated system. Most
of our effort was centered around xeno. Clients can submit requests to xeno that
are either “weak” or “strong”. Servers respond to weak requests immediately with
a speculative reply, which represents the current state of the server; otherwise
they reach consensus on the request. Strong requests are linearizable with
respect to each other. While other Byzantine Fault Tolerant (BFT) protocols
can become unavailable if even a small number of the replicas go offline, Zeno is
able to handle these outages.

2. Approach

We implemented several components in Zeno. Given more time, we would like
to add the rest of the Zeno protocol to xeno, but as it stands now, the system is
functional. More specifically we have implemented the following:

1. Our system can receive requests from clients and send messages to other
servers over TCP. The original Zeno implementation used UDP for most
operations (other than the merge procedure, which was omitted from this
implementation). We opted to use TCP to simplify our design, although
we cannot rely on the invariants granted by TCP (reliability and ordering)
because our outgoing message buffer may not necessarily be sent if the
server goes offline.

2. Our system can verify messages sent by clients and other servers. The
Zeno protocol uses public-key cryptography to vouch for the authenticity
of messages. We also use public-key cryptography in a similar fashion,
through Rust bindings of 1ibsodium.

3. Our system can receive both strong and weak requests from clients, reach
consensus, forward them to the application, and then respond to the client.
Unlike the paper’s implementation, we do not yet handle applications that
have non-deterministic behavior (initialized with a seed), but that could
be easily added.

4. Our system can continue operating as long as fN +2f H] replicas are online.

Technically we can continue operating even if there are f + 1 replicas are
online, assuming that the submitted operations are weak, although we have
not implemented the procedures in Zeno that detect and merge concurrent
histories. Thus, we can really need (%] replicas to be able to make
progress.

5. Our system can elect a new primary if the primary goes offline or behaves
maliciously. This is a product of Zeno’s view-change protocol.

In addition to the merge procedure, we also do not support Zeno’s form of
snapshotting, which is referred to as “garbage collection”.

3. System Properties

3.1 Liveness

The Zeno paper mentions two liveness properties that are important for us.

1. Assuming that there are f+1 servers that eventually will get every message
sent between them, then every weak request that they receive, if that the
client is operating correctly, will be weakly complete.

2. Assuming that there are 2f + 1 servers that eventually will get every
message sent between them, then every weak request that they receive, if
that the client is operating correctly, will be strong complete.

“Weakly complete” is the claim that every operation that came before this request
has already executed, not necessarily that they have been committed or are even
consistent. “Strongly complete” encompasses our definition of linearizability.

3.2 Safety
Zeno is able to detect and merge concurrent histories. Our implementation of

Zeno does not encompass this functionality; thus the safety guarantees regarding
divergent histories in the original paper are not relevant.

4. Design & Implementation

5.1 Why Rust is a good language for distributed systems

All of the code for this project was written in Rust. Rust is an ideal language
for distributed systems for several reasons:

o Rust is safe. For security applications, safety is far more important than
performance. By design, many of the bugs that occur in memory-managed
languages cannot occur in safe Rust. Rust disallows derferencing a dangling
pointer, prevents mutable pointer aliasing, and enforces a stronger form
of const-correctness. Rust even prevents some problems in languages that
are not described as memory-managed. Rust cannot have null pointer
exceptions — functions that may not return a value return an Option
type, and Rust forces the programmer to take account of this property.
Memory is not default initialized; the programmer must set the memory
before it can be read — eliminating problems from default constructors and
from uninitialized memory. Rust’s powerful type system also enforces safe
casting between types and throws exceptions on overflow (in debug mode).
The ownership semantics make data races over a variable impossible, thus
making race conditions more difficult to accidentally introduce. Perhaps
most importantly, there is almost no undefined (or platform-specific) be-
havior. These protections prevent many security bugs from ever being
compiled in the first place.

e Rust has a good paradigm for thread safety. The notion of data ownership
carries over well to concurrent programming, forcing the programmer to
consider which threads have access to certain resources. All mutable objects
shared between threads must be enclosed in a mutex. The compiler must
be able to reason about the lifetime of objects given to spawned threads.

e Rust is fast. The language is primarily focused on zero-cost abstractions —
there is no garbage collection. Rust compiles directly into LLVM, and can
benefit from all of the optimizations that LLVM performs. Benchmarks
have shown that Rust code has comparable performance to analogous C
code.

4.2 System components

In order to implement Zeno, we had to create/use several components that Zeno
relies on. In particular, the protocol required to send signed message over the
network, the means by which requests are authenticated, and the hash digest
function.

The rust crate serde is used to serialize our messages and send them over
the network. In particular, we serialize them into a binary format, convert to
big-endian, and then base64-encode the result. This problem is made somewhat
more complicated by the fact that some structures, such as the commit certificate
(see 4.3), are difficult to compare (e.g set equality, hash map equality, etc.). To
compare sets, we define an ordering on the elements contained within, insert
them into a vector, and then perform a stable sort on it.

We used libsodium’s implementation of the Ed25519 signature system to sign
our messages. For ease of use, we created a Signed<T> object which allowed
arbitrary serializable objects to be serialized and then signed. The digest hash

function used is SHA-256; objects are first serialized, then hashed. Replicas
maintain a hash-chain digest h of the requests they have received (see section
4.3 for an example).

Every replica keeps track of the highest sequence number that they have executed,
n. They also keep track of every Order Request they have received from the
primary, in the order specified by the primary.

4.3 Request flow

Let us consider the following sequence of events:

1. The client sends a request to all replicas (including the primary), signed
with its private key.

2. The primary receives the request from the client, and then broadcasts a
Order Request message to all the replicas in the cluster. Before doing
so, the primary checks that the timestamp for the client is correct — i.e
that the request serial number is one greater than the previous request.
The primary also increments n, the largest sequence number. The Order
Request message includes the hash digest of the request.

3. The replicas all receive the Order Request message from the primary. Then,
the replica waits for the client to send it a request before continuing. If
the message comes from the right view, it computes the next value in
the hash chain — h;, ., = D(hy,,D(r)), where r is the request currently
being considered and D is the hash digest function. It then increments n,
like the primary has already done, and submits the operation specified in
the request to the application. If the client was issuing a weak request,
the replica replies to the client immediately with the response from the
application. If it is a strong request, then the replica sends a commit
message to every other replica. When the replica receives at least 2f + 1
commit messages, it stores a commit certificate consisting of all of these
commits, stores it locally, and then replies to the client with the response.

4. The client returns if it gets a weak quorum (i.e at least f+1) of valid
(signed) responses, assuming that the request was weak. Otherwise, the
client waits until it gets a strong quorum (2f + 1) of valid responses.

There are other steps involved in sequence number assignment, such as the Fill
Hole procedure, that are omitted from this paper for the purposes of brevity.

5. Evaluation

We evaluated Zeno’s performance much like any other BFT system since PBFT
(Practical Byzantine Fault Tolerance), by computing the average request latency
under different conditions.

Request Flow Examplel

Client

Client

Primary Replica 1 Replica 2 Replica 3
Request {R}
Re¢quest {R}
Request {R}
Request {R}
Order Request {D(R)}
Order Request {D(R)}
Order Refuest {D(R)}]
Commit {R}
Commit {R}
Commift {R}
Commijt {R}
Commit {R}
Commit {R}
Commit {R}
Commit {R}
Commit {R
Commit {R
Coqmit {R}
CoJmit {R}
Response {R}
Rejsponse {R}
Response {R}
Response {R}
Primary Replica 1 Replica 2 Replica 3

Figure 1: Request Flow for Strong Request

In particular, we tested the PUT operation into a simple Counter application.
100 trials were performed, with one primary and three replicas, on an Intel
i7-4712HQ with 16 GB of memory. Each test involved a single machine going
offline, either the primary or one of the replicas. Here we see the effects of the
view-change protocol becoming active in the event that the primary goes offline.
The replica going offline has little impact on the request latency, as the client
just receives enough responses from the other nodes anyway.

Faulty Time to reply Standard Deviation

none 2.12 seconds < 1072
primary 5.95 seconds 1.73
replica 2.14 seconds <1072

We have also created a suite of Byzantine fault tolerance tests, mimicking a
variety of behaviors that a broken, compromised, or malicious node could exhibit.
The BFT tests run in parallel to the main Zeno component, occasionally mutating
the state in harmful ways. While there certainly are malicious behaviors that
are not encompassed by these tests, we are reasonably confident about the safety
of our design. For the first and the third tests, we also check that a sufficient
number of faults would indeed prevent the system from functioning correctly.

The first test modifies the hash chain. It performs the following operations
at random — removing the most recent hash, inserting garbage hashes, and
modifying the most recent hash. This test effectively simulates the effect of
servers sending each other faulty hash data. As expected, performance degraded,
but not much.

Faulty Time to reply Standard Deviation

replica 3.60 seconds 0.95

The second test modifies the “pending commit” map. This map contains commit
messages which have been received, but not been matched with a corresponding
Order Request messages. Given that commit messages arrive before the corre-
sponding Order Request (note that this is entirely possible even under TCP),
this test simulates the effect of randomly dropping some commit messages. Inter-
estingly enough, this test did not make much of an impact on the performance
of our system, although we were able to demonstrate that a sufficiently large
number of nodes with this fault were able to stall progress.

Faulty Time to reply Standard Deviation

replica 2.13 seconds <1072

The third test just sets the value of n to zero. n is the highest sequence number
that we currently know about. This test has a variety of consequences for
sequence number assignment, and should make a node temporarily unavailable.
In particular, compromising the primary this way seems to greatly slow down
the system.

Faulty Time to reply Standard Deviation

replica 4.18 seconds 0.39
primary 6.43 seconds 0.92

6. Conclusion

Much of this project was spent reinventing simple TCP networking components —
methods for sending messages to clients and waiting on a response. We effectively
implemented a kind of “futures” for most of our network code.

We had far fewer issues debugging xeno than our Raft labs during labs 2
and 3, despite the complexity of the Zeno protocol. There are two plausible
explanations for this behavior — either our tests are not comprehensive enough,
or our programming process for writing xeno was better than our process for
implementing Raft in the labs. We suspect that using Rust has reduced the
number of bugs that we have had to deal with.

	basementdb
	1. Abstract
	2. Approach
	3. System Properties
	3.1 Liveness
	3.2 Safety

	4. Design & Implementation
	5.1 Why Rust is a good language for distributed systems
	4.2 System components
	4.3 Request flow

	5. Evaluation
	6. Conclusion

