
Chunky: A Dynamically Sharded Distributed Multiplayer Game
Framework
Aashish Welling
Shreyas Kapur

All our source code and benchmarking scripts can be found at the
following link: https://github.com/omegablitz/chunky.

1 INTRODUCTION
Massively multiplayer game servers typically use a single server
to which multiple game clients connect. Scaling and supporting a
higher number of players usually requires hardware upgrades in
the form of better CPUs.

Sometimes, if the game worlds are larger than what a single
server can handle, game developers resort to splitting the world
onto multiple servers with interim load screens as the players are
relayed from one server to another. This limits player interaction
between two world regions and constrains developers to only a few
game design choices.

In this project we present Chunky: a distributed, scalable and
fault-tolerant system to support large worlds and players, scaling
efficiently as the number of servers increase. We present a method
to make the server switches seamless, and allow boundary player
interactions without constraining the game developer to have fixed
world boundaries.

We analyze and build our system on the popular sandbox game,
Minecraft, for convenience and large community supplied code-
bases, while making our implementation general for any game.
We implement our system and benchmark it against other high
performance, single machine based servers on a number of tasks.

2 DESIGN
2.1 Goals
We attempt to design a multiplayer game framework server with
the following features in mind:

• Scalability: we want to be able to string together multiple
machines to create one large seamless world while maintain-
ing performance.

• Fault-tolerance: typically when game servers crash, all the
data that hasn’t been flushed to disk is lost and the players
wait for server to come back online. We want to design our
system such that in case of server failure, players will be
moved to another server with the last flushed data.

• Ease of use:we want to provide an easy to use API for game
developers to use our game framework as a drop in library.

2.2 Bottlenecks
Each game world provided by the developer can be divided into
chunks. A chunk is defined as a discretized c × c × y section of the
game world. In Minecraft, the discretized unit is called a block and
a chunk is a section of the world of 16 × 16 × 256 blocks.

6.824, May 2018,
2018.

At any given time, most games keep certain chunks loaded in
server memory. The server also runs the game loop on these loaded
chunks. These chunks are typically loaded around players, as the
server needs to run the main game logic around them. The number
of chunks loaded around each player is known as the view distance.

World files for games are usually small enough to be kept on disk.
The primary bottleneck arises with keeping chunks and entities
loaded in memory and running the game loop on these loaded
objects. A single server quickly gets saturated as the number of
players increase, and hence the number of loaded chunks.

2.3 Invariants
In a traditional world-splitting approach, player-player interac-
tion between shared world boundaries would not be possible with-
out delicate state synchronization across the two servers. If state-
sharing is used, it incurs bandwidth costs if the states are large (in
the case of Minecraft) and has potential for worlds to diverge states.

Instead, chunky doesn’t split the world into static regions; in-
stead, it assigns ownership of specific chunks to servers. Our system
maintains three key invariants:

• A chunk can at most be owned by one server.
• Players are always connected to servers that own the chunk
that the player is located on.

• Chunks of players within the same view-distance of each
other are owned by the same server.

These invariants allow us to keep players that can potentially
interact with each other on the same server, thereby allowing player-
player interaction critical for any game.

2.4 Operation
Figure 1 shows the system overview diagram. Chunky uses a single
manager as an overseer for operations, a flexible amount of stateless
proxies, the game servers, and a shared network file system.

The servers never save anything to the shared world file unless
explicitly asked to by the manager. This allows us to neatly handle
world load-save races.

During normal operation, the game client connects to one of our
proxies (at random, load balanced) which gets the server the player
should join from the manager. The proxy then forward all traffic
from the client onto the specified game server.

The manager periodically asks each of the game servers for a list
of chunks that are loaded in memory as a result of the players on the
server. The loaded chunks are typically all chunks in view distance
of each player, but can also be based more on special conditions
like merge radius etc. Based on these loaded chunks, the manager
maintains a list of blobs: a set of contiguous chunks. These messages
also serve as heartbeats, making the manager aware of which chunk
servers are online and ready to receive players.

https://github.com/omegablitz/chunky


6.824, May 2018,
Chunky

Figure 1: An overview of Chunky: the manager controls operations, and proxies relay game messages to the correct game
server which run the main game loop. The world files are shared over the network to all game servers and are never written
unless the manager asks to write game states to the disk.

The manager attempts to maintain Invariant 1 & 3. First, it
assigns each blob to a single server, minimizing transitions and
distributing all server resources appropriately (discussed later in
Section 2.5). The manager then calculates all chunk transitions, i.e.
chunks that have a different owner than before, and sends a disk
flush RPC to servers that own those chunks. This instructs the game
servers to write the specified chunk states to the shared disk. The
manager then asks the new owners to load these chunk states from
the shared file.

The manager then attempts to maintain Invariant 2, calculating
if players are on servers that don’t own the chunks they’re located
on, instructing the proxies to switch servers for such players.

Periodically, the manager reaches out to all servers and asks each
server to flush its owned chunks to disks, akin to a world auto-save
on most games.

2.5 Blob Assignment
While there exist efficient solutions to dynamically maintain con-
nected components on a graph, the manager runs an elementary
depth first search to calculate chunk blobs. We found that this was
efficient enough for our benchmarking purposes.

There are three cases when servers need to be reassigned own-
ership:

• Blob Combine: when two blobs become a single blob, we
make a vote of whoever already owns the majority of chunks
in the new blob, and assign chunk ownership of all chunks
within the blob to the winning server. An alternate strategy
could be to minimize the number of player switches, the
tradeoff being player-switches vs state transfer costs.

• Blob Split: when two blobs split, we assign one of the blobs
to the server that has the least number of chunks loaded if its
load is significantly less. Otherwise, we keep the two blobs
on the same server.

• New Blob: a new blob is assigned to the server that has the
least number of chunks loaded.

Figure 2: Our benchmark results on both Spigot andChunky
synchronized in time with n = 50 and b = 1000. We realized
that setting b to a small number means that all players are
on the same server, which defeats the purpose of Chunky.
We discuss more on this in Section 4.

2.6 Fault-Tolerance
In case a game server goes offline and the manager doesn’t receive
the list of loaded chunks from the server, the manager attempts to
distribute chunks previously owned by the failed server onto other
servers.

In the process, it swaps players onto the new servers, giving the
illusion that the fail never happened, and increasing uptime.

The new game state may be a stale version. This is still better
than existing solutions, as with existing solutions we would lose
both data and uptime. Chunky attempts to always be up, even if
the data is a few seconds stale.

3 EVALUATION
Figure 2 shows our benchmark results. We test our platform on a
benchmark we developed. Our benchmark consists of spawning
n benchmarking players on the server, spreading them b blocks
away from each other and making the players perform random
tasks like moving and placing blocks. Across all tests, we kept the



Chunky: A Dynamically Sharded Distributed Multiplayer Game Framework
6.824, May 2018,

random generator seeds constant and the same initial world states
for consistency.

The performance of Minecraft servers are typically measured in
TPS (higher the better) which is the number of ticks the server can
simulate every second. The TPS (as in this case) is usually capped
at 20.0.

We compared Chunky against Spigot, a state-of-the-art Minecraft
server written for performance. Spigot runs on a single CPU core.
For this benchmark, Chunky uses only two Spigot server backends.
The tests were run on the same machine, simulating data-center
level latencies. For each test, we collected TPS over time, synchro-
nizing, running the test 3 times for both Chunky and Spigot and
taking the max TPS.

4 FUTUREWORK
As of now, our system performs and distributes well for sparse
player locations, but starts to break if players are densely packed.
While we relax the condition that dense player regions are unlikely,
we think it’s possible to resolve this issue, at least partially by state
sharing under certain conditions.

Another drawback of our system is that sparse chains of people
invariably make all the chunks loaded on the same server. This
again is a relaxed assumption, but can be resolved by some level of
state sharing across boundaries when the number of players on a
single server grows.

We also need to evaluate the scalability of our system as the
number of players and servers increase. Due to the time constraint,
we omitted this evaluation.

4.1 Conclusions
Chunky is a novel system for distributing workloads that are char-
acteristic of multiplayer games. Previously, game developers would
need to choose between having a small world with full immer-
sion and having a large world with disconcerting transitions when
switching in between these world. Chunky allows for the creation
of large worlds that are completely immersive, and in addition
fault-tolerant and automatically rebalancing.


	1 Introduction
	2 Design
	2.1 Goals
	2.2 Bottlenecks
	2.3 Invariants
	2.4 Operation
	2.5 Blob Assignment
	2.6 Fault-Tolerance

	3 Evaluation
	4 Future Work
	4.1 Conclusions


