
6.824 Final Project

Alap Sahoo (asahoo)
Edward Fan (edwardf)

May 11, 2018

1 Introduction

Online forums like Reddit are some of the most heavily used sites on the In-
ternet today, but worries about administrative or governmental overreach are
pervasive due to their centralized nature; a small number of entities can edit,
delete, or frandulently create posts. A decentralized system can provide stronger
authenticity and verifiability guarantees.

We implement a distributed forum system that uses a torrent-like approach
to publicizing and distributing posts. When a post is created, a seed is propa-
gated to every node in the network; any node can use the seed to download the
post from some peer in the network. We explored, implemented, and tested two
approaches to distribution: one similar in nature to breadth-first search, and
one that coupled a distributed hash table with a gossip protocol.

2 Design

2.1 Requirements and Alternatives

In our original idea, we proposed immutability and verifiability guarantees: any
node could confirm that a particular user made a particular post, and that posts
could not be deleted or modified by anyone once posted. We initially explored
using a blockchain to accomplish these tasks, but moved away from the idea
once we realized there were fundamental scalability issues: every node would
have to store at least a hash for every post, and bringing new nodes online would
take prohibitively long.

We then considered a torrent-like approach. Fundamentally, there are two
parts: seed distribution (a ”front page” like structure to notify users of new
posts) and post retrieval (to actually read content). There are many advan-
tages to using such a framework; nodes can use the forum without having to
store any posts, no global order of posts or comments is required, and special

1



nodes (like ”archival nodes” that store all posts) are easy to implement. Af-
ter implementing a small broadcast protocol to verify that such an approach
worked, we implemented two separate approaches: one involving BFS, and one
involving a DHT.

We were able to get immutability and verifiability very simply; every post
includes a hash of the post and the poster’s public key, along with a signature
(and corresponding public key). The hash and signature can be easily verified.
Although we no longer have as strong of a guarantee against deletion, both of
the protocols described below do make it difficult for a post to be completely
deleted from the network.

2.2 Breadth-First Search

Our initial implementation simply connected all nodes and had them broadcast
all updates to each other. A logical extension, then, would to be to implement
the same idea, but use non-fully connected nodes and distribute requests with
a different scheme.

In this system, each node is connected to approximately log n peers, where
n is the total number of nodes. Although we did not formally analyze the
probability, it makes sense that all nodes should be in the same connected com-
ponent; the probability of multiple components is vanishingly small since peers
are chosen at random (through a sufficiently long random walk). When a node
sends a post, it is passed to all of its peers, which in turn recursively forward it
to its peers (hence the similarity to BFS). This leads to approximately n log n
messages being sent for each post; although this high bandwidth usage is the
primary downside of this scheme, it does have the advantage of not having
hotspots, as every node will send and receive about logn of those messages.

Whenever a node receives a post, it can choose to store the post or just the
seed. This allows for significant configurability - a node that is low on storage
can choose to not store any posts, getting everything over the network; alterna-
tively, a node that wants to archive (and distribute) all messages can choose to
do so. Any rule can be used; a node might choose to save posts from a certain
user, that contain certain keywords, or any other scheme devisable from a post’s
content. In practice, storing a small constant fraction of posts is a reasonable
default for most nodes.

Since posts can be stored anywhere, some assistance is required to efficiently
retrieve posts. To aid in retrieval, as a post is propagated, any node that stores
the post piggybacks the fact that it has stored it on the post. For each seed,
each node keeps track of a node that reported storing the linked post. During
retrieval, the cached node is contacted first; if it no longer has the post (for
example, because it deleted some of its old stored posts), it can still provide
forwarding information to another node that reported storing the post. As a

2



fallback, a node contacts its peers to look for routing information. Although
this scheme does not provide the strongest deletion guarantees (it is possible
that a node can fail to find a post despite it still existing on some other node),
in the vast majority of practical situations, routing succeeds immediately from
the cache. Additionally, one advantage of this scheme is that once a node re-
trieves a post, it typically will also have the post stored, allowing it to respond
to peers or other nodes that query it for said post. This means that popular
posts become easier to retrieve, an excellent quality.

The BFS implementation currently bootstraps new nodes by simply con-
necting them to a set of random peers and copying over a table of seeds. In
practice, seed transfer should be done through a separate system, like the gossip
protocol described in the next section.

Aside from high network bandwidth, the biggest flaw of the BFS protocol
is that it requires at least a moderately high percentage of nodes to be online
in order for routing and propagation to succeed. Although perhaps not entirely
impractical for some sets of users, in a more general Reddit-like userbase, this
requirement would require a level of abstraction that maps users to almost-
always-connected peers (on some server) to allow for good mobile connectivity.
The DHT implementation, described in the upcoming section, effectively solves
this problem.

2.3 Distributed Hash Table with Gossip Protocol

The BitTorrent model that we draw inspiration from is not fully decentralized
- trackers are traditionally a file stored locally at one source, and websites like
PirateBay are generally necessary to learn the existence of torrents. However,
BitTorrent clients have over the years addressed both of these issues. “Track-
erless” torrents that utilize Distributed Hash Table (DHT) implementations
allow for distributed trackers; the Mainline DHT employed by BitTorrent is the
largest DHT in the world. The problem of decentralized torrent search has been
addressed by Tribler and other clients, which utilize a gossip protocol (GP) to
propagate knowledge of different torrents through a network. Both of these so-
lutions map nicely to one of the key problems in implementing a decentralized
forum - storing/retrieving posts, and maintaining a “front page” of seeds to
learn about them. Here, we discuss our design and test implementation of a
DHT-GP system for propagating and storing a decentralized Reddit.

Seeds are propagated by all nodes in a system to their peers using a gossip
protocol - nodes will randomly pair off with other nodes, which exchange infor-
mation about the last S most recently received seeds and store new seeds that
they receive from their partner. Seeds are lightweight - less than 100 bytes in
size - so many seeds can be conveyed per gossip session and be stored locally.
Furthermore, the gossip protocol does an excellent job of conveying information
across a large network. A seed on one node will be propagated to all nodes in

3



a network of size n in O(log n) time; assuming that each node gossips once per
second with random peers, it takes less than 20 seconds to complete propaga-
tion. While the ideal model of completely random peers and constant gossiping
cannot exist in practice, even an approximation is enough; the Bitcoin network
uses a similar approach with eight known peers per node and converges quickly.
(We referenced a survey paper by Alberto Montresor - http://disi.unitn.it/ mon-
treso/ds/papers/montresor17.pdf - in examining gossip protocols.)

While large number of seeds can be stored by everyone and therefore passed
along by anyone, posts cannot be due to their size. Therefore, certain nodes
can choose to identify as “storage nodes” and claim responsibility for storing
and answering queries about posts. Storage nodes are organized using a system
similar to a DHT. There are M hash slots in this DHT, and each storage node
chooses some value m. Posts are stored in the slot given by the last log(M)
bits of their seed hash; a storage node with value m claims responsibility for as
many of the posts mapped to m as it can. Storage nodes in each level form a
network to facilitate the communication of posts, which are also exchanged in
a gossip protocol, trading the last P posts at random. While posts take more
time to transmit than seeds, there are far fewer nodes in each m-level network,
so convergence across the network is rapid. Finally, storage nodes can commu-
nicate with other storage nodes outside their layer by maintaining a set of peers
in the layer above its own. This forms a ring-like structure in the DHT’s layers;
a more sophisticated approach might use more skip pointers (like Chord), but
we don’t believe that’s necessary for our network.

To retrieve posts, each node maintains a table of up to M different storage
nodes (one per layer). To post or access a post associated with layer m, a node
finds the cached storage node in that layer. If it lacks such a storage node or
if the relevant storage node is unresponsive, it can simply query the storage
node at layer m− 1 and ask that storage node to check its “above” neighbors.
If the node at layer m − 1 also does not respond, the node can simply recurse
even further down - as long as there’s one valid connection, it is able to access
any point in the hash table. While in the worst-case O(M) time is required to
find a node on the correct layer, in the average case only a constant number of
lookups is necessary, as each node finds and retains a reliable node per layer.
A node can post by sending its message to the relevant storage node, waiting
some amount of time for the message to be propagated throughout the m-level
network, and then adding the message’s seed to its list of seeds and allowing the
GP to perpetuate the information. Retrieval simply involves asking the relevant
storage node about a given seed and verifying the result.

Certain heuristics and properties help the system deal with node failures.
For example, by removing storage nodes from cache that fail to provide a post,
nodes will eventually converge on “reliable” nodes for each layer. A storage node
in layer m will better maintain “reliable” connections to storage nodes in layer
m+ 1 by asking any of the nodes querying it for the node stored at m+ 1 in the

4



querying node’s hash table, and incorporating that information - the querying
nodes will have a good idea as to which storage nodes are useful. Finally, nodes
exchanging seeds can simply prune peers that they never get useful seeds from.

The DHT-GP system should scale fairly well; for example, assuming both
the seed and post sharing gossip protocols can occur in under 2 seconds, a net-
work of 1 million nodes with 250,000 storage nodes scattered across 250 hash
slots should be able to store a message across the 1000 relevant storage nodes
and perpetuate the message’s seed across the full network in under a minute
each. (Simulations show that a GP can push an item across a 106 size net-
work in 15-17 gossip iterations, and across a a 103 in 6-7.) Retrieval should be
equally fast - while worst-case requires marching down the full M length hash
table and then checking with several storage nodes, the average-case scenario
involves pinging a single or a few reliable storage nodes. The design suits the
decentralized environment well, since both storage nodes and regular nodes are
not required to hold onto any particular posts or seeds for the system as a whole
to function. Finally, network traffic is minimal for new posts, since the full data
of the post is only transmitted within a small subset of nodes, not across the
whole network.

Beyond being relatively complex, the main issue with this system is that the
main parameters - M , P , and S - have to be defined ahead of time, and can
cause problems if not chosen correctly. Ideally M should scale with the number
of users in the network If it’s too big, i.e. M = 1000 for a network of only
100 users willing to store, the users acting as storage will have to run multiple
storage nodes on a single instance across a range of m values. If it’s too small,
i.e. M = 100 for a network of a 106 users willing to store, each hash slot will be
overloaded with nodes and slow down the GP. P and S - the parameters that
define how recent a post or seed can be and still be shared by the GP - need to
be large enough such that no information stops being gossiped about until it’s
spread to most of the network. These, again, likely need to scale with the net-
work. The other key issue is availability - the storage nodes might be unevenly
distributed across the layers, or a single layer might get an overabundance of
the requests, if, say, a popular post is stored there. The latter is partially miti-
gated by how we hash comment chains - a comment is stored in no relation to
its parent, so popular pages should be spread across the DHT and assembled
by the client. And both can be solved in large part by simply allowing storage
nodes to pay for retrieval and storage. In the long run, torrents demonstrate
that the cost will tend towards 0, since the only thing necessary to undercut
another storage node is a copy of its data. And an economic incentive will
create a reason for storage nodes to “behave”, by properly maintaining posts
and spreading themselves across storage nodes appropriately, while preventing
meaningless spam from nodes querying the DHT.

5



3 Implementation

3.1 Code Structure and Tests

The code is available at https://github.com/edfan/dreddit.

src/dreddit contains the primary implementation. The shared post and
verification infrastructure is located in reddit.go, while the network backends
exist in broadcast.go, bfs.go, and dht.go. A simple script to show how fast a
GP can push information through a network can be found at basicgpsimulation.py.

Tests for the BFS and DHT implementations are located in bfs test.go

and dht test.go respectively. Running go test (perhaps after go get)

should successfully run all tests for both backends, as well as a simple

verification test. The tests include massive concurrent posting, recovering

from disconnected peers, and deletion of posts from some nodes (to

simulate nodes emptying their caches).

labrpc is used as the underlying network for testing.

3.2 Live Demo

(This is a work in progress; will be online by the presentation.)

Using WebSockets, we’re implementing a simple browser-based demo

where users can control nodes in a pre-built network. Some preliminary

proof-of-concept code is in src/websockets, although no real UI exists

(and there are plenty of bugs).

6

https://github.com/edfan/dreddit

	Introduction
	Design
	Requirements and Alternatives
	Breadth-First Search
	Distributed Hash Table with Gossip Protocol

	Implementation
	Code Structure and Tests
	Live Demo


