
N Chainz: A High Performance, Decentralized Cryptocurrency Exchange

Nick Egan
negan@mit.edu

Ryan Senanayake
rsen@mit.edu

Lizzie Wei
ewei@mit.edu

1 Introduction

Centralized exchanges rely on trusting that their
owners will take the proper security precautions.
This has led to many incidents of stolen cryptocur-
rency adding up to billions of dollars worth of
losses, and is a stark contrast to the decentraliza-
tion of the rest of the space. On the other hand,
decentralized exchanges have the potential to be
much more secure: theoretically, users are not vul-
nerable to server downtime and hacks, and can re-
tain anonymity.

In this project, we present N Chainz, a decen-
tralized cryptocurrency exchange. Specifically, N
Chainzs features include block generation, limit
orders, and the ability to trade a base token with
another token. Our main goals are high perfor-
mance and fault-tolerance. While we would ide-
ally focus on high performance, the reality is that
building high-performance exchanges is a com-
plex problem even when built in a centralized fash-
ion. We believe that we have been able to achieve a
relatively simple design while not sacrificing per-
formance. In this paper, we will discuss our major
design choices and implementation.

Figure 1: System Overview. N Chainz’s implemen-
tation is organized in several layers, which we dis-
cuss in detail in the next few sections.

2 Multiple Blockchains

The most unique aspect of our design is the use of
multiple blockchains to reach a unified consensus
state. In our design, we maintain a separate token
chain for each token added to the exchange as well
as a match chain, which coordinates interactions
between tokens. This has a number of advantages
over a single chain design, which will be discussed
in the following sections.

2.1 Comparison to Single Blockchain
The main improvement that a multiple blockchain
solution offers is scalability. A single blockchain
design results in a linear performance decrease
proportional to the number of tokens as all nodes
must agree on the exact same state. Our design al-
lows for each chain to operate independently with
a loose consensus enforced of trades by the match
chain. We assume that inter-token commands such
as orders do not dominate the usage of this system
and that intra-token commands such as transfers
are used frequently.

In our prototype, miners randomly choose
chains to mine, but as the system scales, miners
will be incentivized to select certain chains to fol-
low (all miners must also follow the match chain).
This shards the blockchain across overlapping sets
of miners to save in the cost of storing this infor-
mation and also allows for processing many trans-
fers of a single token without affecting the per-
formance of the rest of the system. Even though
all miners must follow the match chain, this chain
is also the most space-efficient as transactions on
this chain consist of pointers to information on
token chains (see section 2.3). This also means
that less information must be globally agreed upon
(typical match transactions in our system are 56
bytes whereas typical bitcoin transactions are 250
bytes), which theoretically improves our through-
put.

The bottleneck of most blockchain systems is



network latency and bandwidth. If the latency of
the peer-to-peer network was lower, the mining
difficulty can be decreased to produce blocks more
frequently, and if the bandwidth was higher, the
block size could be increased. Producing a block
in single-chain systems creates a flooding effect on
the network that increases latency of block propa-
gation and leads to inefficient bandwidth utiliza-
tion. We believe that a multi-chain system can
lead to improved network utilization as each chain
reaches consensus at different random times. As
forks between chains are less frequent than forks
within the same chain (due to the loose consensus
mechanism discussed in the following sections),
this theoretically allows for us to choose more ag-
gressive parameters (mining difficulty, block size,
etc.) to achieve higher throughput than a single
blockchain system.

Figure 2: Multiple Blockchains. N Chainz uses
multiple blockchains (One Match and two Token
chains are pictured) to store its state. Interaction
between tokens is ordered by the Match chain and
coordinated by Order Book and Unclaimed Funds.
All transaction types are pictured as long as the
direction they cause for funds to move.

While this system does have some advantages,
there are also some disadvantages to address. The
first is that hashing power is split among multiple
chains, making each chain more vulnerable to a
51% attack. However, this system also provides
isolation between chains, which helps to limit the
effects of an attack. Attacking the match chain can
only allow for an attacker to freeze funds currently
kept in orders. Attacking a token chain allows for
the attacker to only steal funds from this chain. Fu-
ture work should be done to further mitigate such

an attack. One possibility is to adapt how miners
choose which chain to mine such that a 51% attack
is detected and countered by increased hashing
power being devoted to the chain. Alternatively,
different consensus mechanisms can be used such
as proof-of-stake (see section 4.1). The other dis-
advantage is that it is less clear when it is okay to
assume that a block will be included in the final
state and isnt part of a shorter fork. However, we
decided that this tradeoff was justified by the in-
creased performance of such a network. A decen-
tralized exchange provides a unique opportunity
to attempt such a multi-chain design and believe
that future work will resolve these problems just
as over time they were resolved for single-chain
systems.

2.2 Token Chain Behavior

By following a single token chain, the balances
of all token holders can be recovered. As dis-
cussed in section 3.1, N Chainz chooses to keep
a map of balances for all token holders instead
of the Bitcoin model of tracking unspent transac-
tion outputs. Three different transactions are sup-
ported on a token chain: Transfers, Orders, and
Claim Funds. Transfers allow transferring funds
between two addresses. Orders allow offering one
token for another at a specified exchange rate (see
section 2.4). Once an order has been completed
or cancelled, resulting funds are kept in an Un-
claimed Funds store. By issuing a Claim Funds
transaction, users can make these funds available
for spending on the token chain. Logically, token
funds are loaned to the match chain via the order
book and then reclaimed to their respective match
chains via the Unclaimed Funds store.

The data stored in each type of token chain
transaction is listed below:

• Order

– ID: unique id for order

– Buy Symbol: other symbol (not the
chain that this transaction is published
on) to exchange with

– Amount to Sell: amount of the current
chains token to exchange

– Amount to Buy: amount of the other to-
ken to receive in exchange for Amount
to Sell. Combined with Amount to Sell,
this defines the price of the order.

2



– Seller Address: address to withdraw
funds from this token and deposit into
the other token

– Signature: signature by private key to
prove that order was sent by Seller Ad-
dress

• Claim Fund

– ID: unique id for claim funds
– Address: address to attempt to claim

funds for
– Amount: amount to claim from Un-

claimed Funds Store

• Transfer

– ID: unique id for transfer
– Amount: amount to transfer between

addresses
– From Address: address to send from
– To Address: address to send to
– Signature: signature by private key to

prove that order was sent by From Ad-
dress

2.3 Match Chain Behavior
The match chain acts as a master log that provides
a global ordering of events on token chains. Match
chains contain three different transaction types:
Create Tokens, Matches, and Cancel Orders. All
tokens are initially created on the master chain via
a Create Token. Matches are found by connecting
orders in the order book (see section 2.4). Finally,
a Cancel Order refunds the money from an order
and prevents it from being matched.

The data stored in each match chain transaction
is below:

• Match

– Match ID: unique id for match
– Sell Symbol: token on sell-side of match
– Sell Order ID: id for matched sell-side

order
– Seller Gain: amount given to seller in

buy tokens
– Buy Symbol: token on buy-side of

match
– Buy Order ID: id for matched buy-side

order
– Buyer Loss: amount taken from buyer

in buy tokens

– Transfer Amount: amount taken by
seller and amount given to buyer in sell
tokens

– Matcher address: Address of node that
found match, which will be credited the
surplus of the match

• Cancel Order

– Order Symbol: symbol of order to can-
cel

– Order ID: id of order to cancel
– Signature: signature by private key to

prove that Cancel Order was sent by cre-
ator of order

• Create Token

– Symbol: symbol of new token. This acts
as a unique identifier for the token

– Total Supply: the total supply of the to-
ken. This amount will be credited to the
creators address on creation of the token

– Decimals: number of decimal places of
a token. This is used only for displaying
the currency to humans.

– Creator Address: the address of the cre-
ator. This address must have sufficient
funds to create a token on the native to-
ken chain (the first token chain created).
This address will also be sent the Total
Supply in the new token.

– Signature: signature by private key to
prove that order was sent by Creator Ad-
dress

2.4 Multi-chain Consensus

Generally, consensus can be reached indepen-
dently on each chain, however a few invariants
must be maintained in order to ensure a valid state.
In single-chains systems, it is always possible to
rollback and to maintain a valid state. However, in
our system two invariants must be checked when
rolling back chains. First, when rolling back Or-
ders, they cannot be referenced in Matches on the
match chain (if they are rollback the match chain).
Second, when rolling back Matches and Cancel
Orders on the match chain, no values in the Un-
claimed Funds store can become negative (if they
do rollback the corresponding token chain).

When matching orders, it is important to only
allow mined orders to occur in a match. Other-

3



wise, an invalid state can occur if a match ref-
erences an order that is mined in the same block
as a Claim Funds that is dependent on the current
match. This block would be rejected by the net-
work, but could be mined by a miner.

3 Consensus State

Each token chain results in an agreed upon consen-
sus state. This state can be recovered by replay-
ing all of the transactions in each blockchain. It
is important to note that any valid replaying of the
blockchain log results in the same consensus state.
If this was not true, then the stored blockchains
would not be a real log, which would make recov-
ery and consensus impossible.

3.1 Token Chain Consensus State
The state associated with each token is the follow-
ing:

• Balances: a map from addresses to balances.
This is different than the bitcoin model of
unspent transaction outputs. This allows for
higher performance and simplicity at the ex-
pense of lightweight SPV nodes, which we
decided was a worthwhile tradeoff.

• Unclaimed Funds: a map from addresses to
the amount of this token in the Unclaimed
Funds store. Funds are placed here after a
completed match or a cancelled order and can
be moved to balances by the user issuing a
Claim Funds transaction.

• Used Transfer IDs: a set of used transfer ids.
This ensures that a transaction only occurs
once and cant be replayed by an attacker.

• Open Orders: a map from order ids to Or-
der transactions. This allows a Cancel Order
or Match transaction to reference the order id
directly. Orders are removed when they are
cancelled or depleted by Match transactions

• Order Update Counts: a map from order ids
to how many mutations have occurred on the
order. This tracks how many matches have
been applied to an open order. This is neces-
sary information to ensure that an order that
has already been matched doesnt get rolled
back (described in 2.4). Order IDs are re-
moved from this map once the order is re-
moved from Open Orders.

• Deleted Orders: a map from order ids to
deleted Orders. This allows for deduplica-
tion of orders as well as the ability to rollback
Match and Cancel Order transactions. We
discuss in Section 7 how this does not need
to be stored in memory and a future imple-
mentation should store this on disk with the
relevant block.

3.2 Match Chain Consensus State
The match chain mostly modifies the state on to-
ken chains, but also maintains the following state:

• Created Tokens: a map from token symbols
to the information about the token. This in-
cludes the total supply, creator address, and
number of decimals.

• Used Match IDs: a set of used match ids.
This is not necessary, but allows for us to
deduplicate matches without processing the
match, which provides a performance opti-
mization.

4 Proof of Work

4.1 Comparison to Other Consensus
Algorithms

We chose proof of work over proof of stake for
the sake of simplicity. We are already attempt-
ing to build a complex multi-chain consensus sys-
tem and decided that for a prototype, built from
scratch, proof-of-work would be better suited.

In proof-of-work, miners solve computation-
ally hard problems to verify the transactions on
each block. Thus, a miners probability of success
in creating a block is proportional to the fraction
of computational power they have. Bitcoin and
Ethereum are currently based on proof of work,
which helps provide real-world evidence of the se-
curity of such a system.

In contrast, proof-of-stake depends on a net-
work of trusted forgers. Due to their stake, they
are motivated to validate. Thus, a forgers prob-
ability of creating a block is proportional to the
fraction of the total number of coins that they own.
Looking into chain-based and BFT-style proofs of
stake, we decided that proof of work would be
simpler to implement and therefore well-suited for
an initial prototype. We looked into many proof-
of-stake libraries that purported that it would be
simple to build on top of. However, we found that
many of these hid significant design flaws. For

4



example, Tendermint seemed to be a good library
until we discovered that blocks are only proposed
by a small set of proposer nodes. These nodes are
chosen round-robin, which means that a denial-of-
service attack can be mounted on the entire net-
work by attacking one node at a time. We did not
trust current implementations, but look forward to
new proof-of-stake algorithms such as Ouroborus
Genesis and Algorand, which do not suffer from
the same simple DOS attack as these systems. We
believe that our model of one blockchain per to-
ken is perhaps well-suited for a proof-of-stake or
hybrid proof-of-work and proof-of-stake solution.

4.2 Miners
New transactions are added to an unverified trans-
action pool. Each miner chooses a random token
chain to mine. Then, for that token, the miners try
to mine transactions that are currently in the pool
as well as new transactions as they come in.

We ensure that transactions are valid by making
all transactions in the pool unique, and by validat-
ing each one through the consensus state before
mining.

We currently have a set constant difficulty for
mining. We looked into implementing adjusting
the difficulty - for example, Bitcoin adjusts its dif-
ficulty such that blocks are mined roughly every
10 minutes. However, we decided to stay with a
constant difficulty for our initial prototype.

Each chain reaches consensus separately. Al-
though nodes keep track of all chains, they only
mine one chain at a time. The longest valid chain
is chosen to be correct. If a miner is on a shorter
chain, they will get the more up to date version
from a peer. As each chain reaches consensus sep-
arately, we can replace one chain at a time.

4.3 Matchers
Matchers are a subset of miners, which also submit
match transactions based on orders on the order
book. Any node can choose to find matches, but
we expect that only a small subset will participate
as they are only incentivized by collecting the sur-
plus of matches. This is actually by design as the
computation and memory needed to find matches
is not necessary to be replicated over all nodes.
By limiting this computation to a subset of high-
powered nodes, we actually decrease wasted com-
putation and increase throughput. This is another
big advantage of having a separate match chain as
many matches can be mined to each block of this

chain. All nodes must still validate all matches
created and therefore there is not a fear of 51%
attacking the matchers.

5 Order Matching

As an exchange, the primary function of N Chainz
is to allow users to exchange one kind of token for
another. This exchanging of tokens can go from
any token to any other token, and all relevant data
about token exchange is stored on the blockchains.

5.1 Orders

Like any other exchange, N Chainz allows users to
exchange tokens through limit orders. On most ex-
changes, a limit order specifies that the user would
like to buy or sell a certain amount of an asset (like
Bitcoin) for at most or at least a certain price (in a
base currency like USD). With N Chainz however,
the notion of the asset versus the base currency is
ambiguous, since every token can be exchanged
for any other token. Therefore, an N Chainz order
specifies that the user would like to buy a certain
amount of one token (the buy amount) in exchange
for at most a certain amount of another token (the
sell amount). Thus, all orders are both buy orders
of one token and sell orders of another token.

Limit orders in N Chainz are Good-Til-
Canceled (GTC), which means that they never ex-
pire. If a user would like to cancel their order, they
can do so with a cancel-order transaction. Both or-
der transactions and cancel-order transactions are
stored on the token chain for the token they are
selling.

5.2 Orderbook

An orderbook is a data structure used by ex-
changes to match up buyers of an asset with sellers
of an asset, where the buyers and sellers are using
the same base currency. A typical exchange has
a quote side, containing orders wishing to buy the
asset, and a base side, containing orders wishing to
sell the asset. In N Chainz, each currency pair has
an orderbook, for which the quote side is buying
the token that has an alphabetically higher symbol
in exchange for the alphabetically lower symbol,
and the base side is buying the token that has an
alphabetically lower symbol in exchange for the
alphabetically lower symbol.

It is important to note that the orderbook is a
data structure kept in memory by the node in order
to facilitate matches, and not on the blockchain ex-

5



plicitly. Within the context of this orderbook, or-
ders can be categorized as buy orders that buy the
quote token in exchange for the base token, and
sell orders that sell the quote token in exchange for
the quote token, and orders can be given a price in
the base token.

5.3 Matches

A match can be made between a buy order and a
sell order on an orderbook if the buy price is at
least the sell price. A match has an amount trans-
ferred, which is the amount of the quote currency
transferred from the seller to the buyer, a seller
gain, which is the amount of base currency trans-
ferred from the buyer to the seller, and a buyer
loss, which is the amount of quote currency trans-
ferred from the seller to the buyer. Matches can
either completely fill orders, if they deplete the or-
ders buy amount completely, or partially fill or-
ders otherwise. It is possible for orders to be com-
pletely filled and still have a non-zero sell amount
left over.

If the buy price is exactly the sell amount, then
the seller gain is equal to the buyer loss, but if not,
then the seller gain is less than the buyer loss, a
property that can be derived from the definition of
a limit order. In this situation, the leftover amount
of base currency is given to the miner as a reward.

5.4 Matching Engine

The matching engine is a component of our sys-
tem that tracks an orderbook for every currency
pair and finds matches. It stores each orderbook
as 2 heaps, with a max heap tracking the quote
side and a min heap tracking the base side. The
matcher checks for matches whenever the system
reaches a quiescent state (no blocks are currently
being rolled back or applied). When this occurs,
the matcher repeatedly extracts from both heaps
until there is no more overlap. Every match is gos-
sipped to other nodes and mined in blocks. The
matcher only attempts to match mined orders as
attempting to match unmined orders can lead to
the invalid state discussed in Section 2.4.

6 Network

Like any other blockchain system, N Chainz is dis-
tributed across nodes in a peer to peer network.
Every N Chainz node is responsible for storing a
copy of the blockchain, maintaining a copy of the
consensus state, and responding to network RPC

calls. In addition, N Chainz nodes can optionally
mine new blocks and match orders.

6.1 RPC Messages

N Chainz nodes exchange messages via RPC calls.
The messages used are similar to those of Bitcoin,
but modified to fit our network design.

6.1.1 VERSION
VERSION is used by network peers as a hand-
shake when establishing a connection. When a
node hears about a new peer, it send it a VER-
SION message that includes the version of the N
Chainz protocol it is running. When a node re-
ceives a VERSION message, it makes sure that it
is running the same version of N Chainz, and if so,
responds with its own VERSION message. Every
node rejects RPC calls from a peer if they havent
successfully exchanged this VERSION handshake
in order to ensure that all nodes in the network are
following the same protocol.

6.1.2 ADDR
ADDR, meaning addresses, is used by nodes to
share a list of known peers with other nodes.
Whenever an N Chainz node connects to a new
peer, it broadcasts ADDR to its existing peers to
notify them of this peer. When a node receives an
ADDR message, it attempts to connect to all of
the new peers with a VERSION message. A con-
sequence of this behavior is that our N Chainz net-
work is fully connected, with every node commu-
nicating with every other node. While this design
makes it harder for degenerate network topologies
to emerge, it will put excessive load on the net-
work as this system scales. To deal with this, we
plan on introducing a system of nodes limiting the
amount of other nodes they communicate with.

6.1.3 TX
TX, meaning transaction, is used to inform a node
of a transaction on the network that should be
eventually mined into a block. A TX message
can be sent by either a client when it makes a new
transaction, or by a peer node when it hears about
a new transaction. When a user of N Chainz would
like to make a new transaction, it uses its client to
send a TX message to a running node. When a
node hears about a new transaction, it verifies it
against its current state. This verification depends
on the transaction type, which can include checks
like making sure the user has a sufficient balance

6



for a transfer transaction or that an order wasnt al-
ready filled for a match transaction. If the new
transaction is valid, the node broadcasts the TX
message to its peers. If the node is a miner node,
it adds the transaction to its mempool to be mined.

6.1.4 INV
INV, meaning inventory, is used by a node to share
blockhashes of its chains, and N Chainz nodes pe-
riodically broadcast it to all their known peers. In
our current system, an INV call includes all block-
hashes of all chains, but we plan on improving the
protocol to include only the most recent block-
hashes in unsolicited messages while providing
older blockhashes on demand. When a node re-
ceives an INV call, it compares its blockhashes to
its peers blockhashes, using the chain reconcilia-
tion mechanisms described below.

6.1.5 GETBLOCK
GETBLOCK is used by a node to get the block-
data for a block given the blocks hash and chain,
and is used during the chain reconciliation pro-
cess to bring a node up to date with a peers chain.
When a node receives a GETBLOCK from a peer
for a blockhash, it returns the block data if it has it
in its chain, and returns an error if it doesnt.

6.1.6 Client RPC Messages
N Chainz nodes are also equipped to respond to
a few message types used by N Chainz clients in
order to get the current state of the node. Nodes
currently support a GETBALANCE call which re-
turns the balance of a user, a GETBOOK call to
get the orderbook, and a DUMPCHAINS call that
returns metadata about recent blocks on all the
chains. These RPC calls are used to build our web
interface, and we may find it useful to add addi-
tional message types to allow better client interac-
tion with the network.

6.2 Chain Reconciliation

When a node receives an INV call from a peer, it
will often find that one of the peers chains is dif-
ferent than its own corresponding chain. In order
to reach consensus about the system state, it is im-
portant for a node to determine who has the more
up to date chain, which is defined as the longest
chain where every block on the chain is valid. If
a node hears about a peer with a longer match or
token chain, it will roll back its own chain until
the blockhash at the tip of the chain matches the

hash of the block on the peers chain with the same
height. The node is guaranteed to find such a block
because the genesis block for a chain is guaran-
teed to be the same across peers. It will then use
GETBLOCK to request the missing blocks from
its peer, and then apply each one in order. While
applying, it will ensure that every transaction in
every block is valid, and if it finds an invalid trans-
action, it aborts the chain reconciliation.

6.3 Bootstrapping

In order for a new N Chainz node to join the N
Chainz network, it needs to know the network ad-
dress of at least one existing node. Each node
keeps a list of seed addresses to bootstrap its con-
nection.

7 CLI and Web Interface

We built a command line interface for users to
manage accounts, create transactions, and run
nodes and miners. Specifically, in terms of man-
aging accounts, users can create wallets, get the
balance of a specific address in a specific token,
and print all addresses. For creating transactions,
users can put in limit orders between different to-
kens, transfers, cancels orders, claim funds, and
create new tokens. Finally, for running nodes and
miners, users can start up a node at a specific host
and port, and print all blocks in a specific chain.

Figure 3: A screenshot of our Command Line In-
terface help menu.

We also have a web interface that visualizes or-
der matching and a 3-minute-window price chart
in real-time.

7



Figure 4: A screenshot of our Web Interface. The
first chart displays orders as they are matched.
The second chart displays the price history over
the last 3 minutes.

8 Conclusion

In the future, we plan on adding more features to
our initial prototype. Specifically, we will imple-
ment freezing and burning of tokens, transactions
feeds in native coin, a target adjusting algorithm
for our proof of work difficulty, and execution re-
ports triggered by trades.

We also plan to investigate implementing proof
of stake in order to improve performance.

Finally, we would like to make some improve-
ments: for example, improving our peer to peer
network, and how we store deleted orders. (Cur-
rently, we keep deleted orders in memory, in-
stead of writing them to a disk associated with the
block.)

Acknowledgments

We would like to acknowledge Ivan Kuznetsov
for his blockchain implementation tutorial 1 that
helped us get started.

Code

Our repository can be found at the link
https://github.com/rsenapps/nchainz

1https://github.com/Jeiwan/blockchain go

8


