
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.824 Spring 2004

Midterm Exam Answers

The average score was 86, the standard deviation was 12.

1

I Porcupine

Consider the Porcupine e-mail server described in Manageability, availability and performance in Porcu-
pine: a highly scalable, cluster-based mail service. The Porcupine User Map is a table that maps the hash
of a user name to the identity of the server responsible for that user’s profile and fragment list. Porcupine
uses code like this to find the host name of the server that is responsible for a user:

int UserMapSize = 20;
String[] UserMap = new String[UserMapSize];
// ...
String user2server(String username) {
int h = username.hashCode();
h = h % UserMap.length; // % is the modulo operator
return UserMap[h];

}

1. [10 points]: Suppose, by an amazing coincidence, all users’ names hashed to 13 modulo
UserMapSize. Compared to an even distribution of hashes, would this significantly reduce the rate at
which Porcupine could receive messages? Why or why not?

Not significantly. It is true that one server would have to do all the lookups to find out where
users’ fragments and profiles were stored. But the load of storing and retrieving messages would
still be spread over all the servers. Figure 6 in the Porcupine paper shows that overall perfor-
mance is hardly affected by extreme imbalances in the hashing.

Suppose that Porcupine didn’t have a User Map at all, but rather directly hashed the user name to decide
which server to use. That is, suppose Porcupine numbered its N servers 0 through N-1 and used this code to
decide which server was responsible for a user’s profile and fragment list:

int user2server(String username) {
int h = username.hashCode();
int s = h % NServers;
return s;

}

2. [10 points]: Why might this scheme adversely affect Porcupine’s efficiency? Hint: think about
what would have to happen when a new server was added and NServers was increased.

A new server would cause most of the user to server mappings to change, so that most fragment
lists and profiles would have to be copied from one server to another.

2

II Echo

You’re using a workstation with files stored on an Echo file server, as described in A Coherent Distributed
File Cache with Directory Write-Behind by Mann et al. Your workstation is named W1, your current
directory is /d, and /d starts out with no files or subdirectories in it. You type commands which cause
the following file system operations to occur, one at a time (this notation is the same as in Figures 4 through
7 of the Echo paper):

create(/d/f1)
append(/d/f1, aa)
create(/d/f2)
append(/d/f2, bb)
rename(/d/f2, /d/f3)
append(/d/f3, cc)
create(/d/f4)
append(/d/f4, dd)

You then read file f4 on W1 and observe that it contains “dd”. You stand up and leave, but as you walk away
from the workstation you accidentally trip over W1’s power cord and unplug it, so it instantly stops. You
walk over to workstation W2 (connected to the same Echo server) and look at the files in /d. During this
whole time, no other user or process is modifying the file system, and there are no failures other than the
crash of W1. The software has no bugs in it. Keeping in mind the guarantees stated in Section 3.1 of the
Echo paper, answer the following questions about the possible states of the files in /d that you might see on
W2.

3. [2 points]: Is f4 guaranteed to exist (that is, to appear in the directory /d)? No, since W1 might
not have written it from its write-back cache to the server before the crash.

4. [2 points]: If f4 exists, is f1 guaranteed to be non-empty? No. Echo only guarantees ordering
for writes to the same object, and f1 and f4 are different objects.

5. [2 points]: If f4 exists, is f3 guaranteed to be non-empty? Yes. The following individual orders
imply that Echo must send the contents of f2 to the server before sending the create of f4: the
rename “writes” f2 and must come after the append, and the create(/d/f4) “writes” /d and must
come after the rename.

6. [2 points]: Could f2 exist and contain exactly “bb”? Yes. The workstation might have crashed
after it sent the append to the server, but before sending the rename.

3

7. [2 points]: Could f2 exist and contain exactly “bbcc”? No. Echo guarantees to send the
rename to the server before the append(/d/f3, cc): they both write f3, so Echo must order them.

Now suppose that you had been using an NFS server, as described in Design and Implementation of the Sun
Network Filesystem, by Sandberg et al. You do all the same things, using a UNIX program that looks like
this:

fd1 = creat("/d/f1", ...);
write(fd1, "aa", 2);
close(fd1);
fd2 = creat("/d/f2", ...);
write(fd2, "bb", 2);
close(fd2);
rename("/d/f2", "/d/f3");
fd3 = open("/d/f3", ..., O_APPEND);
write(fd3, "cc");
close(fd3);
fd4 = creat("/d/f4", ...);
write(fd4, "dd", 2);
close(fd4);

Again, you read f4 and observe that it contains “dd”, accidentally unplug W1’s power, and look at /d on W2.
Based on the design and implementation described in the NFS paper, answer these questions about the state
of the files in /d as seen on workstation W2.

8. [2 points]: Is f4 guaranteed to exist? Yes. The NFS paper does not mention any write-
behind or caching for directory modifications, so the client must send the CREATE RPC to the
server. Furthermore, the paper says that close() does not return until the server acknowledges
all WRITEs, and the WRITE RPCs cannot be issued until the CREATE has returned because
the WRITE needs to know the file handle.

9. [2 points]: If f4 exists, is f1 guaranteed to be non-empty? Yes. The program doesn’t create f4
until close(fd1) returns, which guarantees that the server knows about the write to f1.

10. [2 points]: If f4 exists, is f3 guaranteed to be non-empty? Yes, for the same reason as the
previous question.

11. [2 points]: Could f2 exist and contain exactly “bb”? No. The fact that the program finished
means that the rename and write of “cc” completed.

4

12. [2 points]: Could f2 exist and contain exactly “bbcc”? No, for similar reasons as the previous
question.

13. [8 points]: Outline a simple scenario in which a client using Echo would likely experience
much better performance than a client using NFS.

A single client that repeatedly opens, overwrites, and closes the same file. Creation and writing
of a series of distinct files probably doesn’t run much faster in Echo than in NFS because in the
end the Echo client does have to send the data to the server, though it is true that Echo avoids
stalling the application in each close().

Now suppose that you had been using a workstation with a local disk using the FSD file system, as described
in Reimplementing the Cedar File System Using Logging and Group Commit, by Hagmann. Note that FSD
is a local disk file system; there is no network and no server. You perform the same operations as in the
Echo scenario, including reading f4 and seeing that it contains “dd”, and then you accidentally unplug the
workstation’s power cord. You’re very agile and the whole sequence takes only about half a second. You
plug the workstation back in, it reboots, it runs the FSD recovery program, and you then look at the files in
/d.

14. [2 points]: Is f4 guaranteed to exist? No. FSD might not have written that part of the the
in-memory log to disk yet.

15. [2 points]: If f4 exists, is f1 guaranteed to be non-empty? Yes. FSD file data writes are
synchronous, so f1’s contents are guaranteed to be on the disk before the log records for the
creation of f1 or f4.

16. [2 points]: If f4 exists, is f3 guaranteed to be non-empty? Yes, for much the same reason as
the previous question.

17. [2 points]: Could f2 exist and contain exactly “bb”? No. f2 could still exist, because the
rename log entry might not have been written to disk before the crash. But since file data writes
are synchronous, the “cc” must have been written to disk, so if f2 (or f3) exists it must contain
“bbcc”.

18. [2 points]: Could f2 exist and contain exactly “bbcc”? Yes.

5

19. [2 points]: Could both f2 and f3 exist? No. The paper explains that much of the point of
using the log was to ensure atomic operations on the file name table.

6

III Tamper-Evident Boot

Alyssa P. Hacker operates the YETI@home project, a giant distributed Internet computation whose goal is
to simulate the behavior of the hypothetical Yeti (a giant ape-like creature) in order to guess where on Earth
it might be found. Alyssa’s basic approach is to divide her simulations into small pieces and farm them out
to legions of Internet enthusiasts who are running her application on their home PCs. When a participating
machine finishes its piece of the simulation, it reports its result back to Alyssa’s central server and fetches
a new unit of work. Alyssa’s server keeps track of which participants perform the most work, and posts the
names of winners on her web site.

Sadly, Alyssa finds that some participants are cheating, apparently by modifying their copy of her software
to return a random result to her server, without actually doing the computation. Alyssa has no way to
check the correctness of the reported results, other than doing the computation herself, which would be too
time-consuming.

Alyssa searches the Computer Science research literature looking for a potential solution. She reads about
XOM (in Architectural Support for Copy and Tamper Resistant Software), which seems like it might be able
to solve her problem. However, no actual XOM hardware exists, the design seems complex enough that
such hardware might be a long time coming, and besides Alyssa only needs to be able to detect whether her
application has been tampered with; she doesn’t need copy protection. Furthermore, Alyssa doesn’t need a
tremendously high level of security: she just wants to raise the level of effort required for a participant to
send in a fake result.

Alyssa invents what she calls “Tamper-Evident Boot.” She believes that it will help her solve her problem,
and she thinks that her design will be easy to deploy because it involves no changes to existing PC CPUs
and just a few simple additions to PC motherboard designs.

Here’s Alyssa’s hardware architecture:

|-----| |-- ROM with boot code
| CPU |-------|
|-----| | |-- DRAM, disk, network

|
|
|-- Magic Register
|
|

|--------------|
| Secure |
| Co-processor |
| |
| private key, |
certificate

7

This is a component view of a motherboard. The CPU is an ordinary CPU chip, such as an Intel Pentium.
The connection to the DRAM and boot ROM is an ordinary memory/device bus. Alyssa’s design adds two
new devices to the motherboard, connected to the bus.

The Magic Register holds 160 bits of data (the size of the output of a typical cryptographic hash), but the
CPU can write it only once after each power cycle or reset. That is, the Magic Register contains a flag; the
flag is cleared to zero after a reset or power cycle, the Magic Register sets the flag to one after a write, and
the Magic Register ignores writes if the flag is already equal to one. The CPU can read the Magic Register
at any time.

The Secure Co-processor is a simple microprocessor chip that contains public-key algorithms, a private key,
and a certificate. All of the Secure Co-processor’s code is in a read-only memory inside the co-processor
chip. The private key is stored inside the co-processor in a way that’s difficult for anything but the co-
processor’s software to read. The manufacturer gives every Secure Co-processor a unique private/public
key pair and a certificate. The certificate is signed by the manufacturer’s private key, and includes the
co-processor’s public key; we’ll assume that the manufacturer’s public key is well known.

The Secure Co-processor supports just one operation: the CPU can send it some data over the device bus, and
the Co-processor will return a copy of the data and and its certificate and the contents of the Magic Register,
signed by the Secure Co-processor’s private key. That is, the Co-processor implements this function for the
CPU:

attest(data) {
struct scp_msg scpm;
scpm.cpu_data = data;
scpm.register = Magic Register contents;
scpm.cert = co-processor’s certificate;
scpm.signature = Sign(scpm, co-processor’s private key);
return scpm;

}

Alyssa’s intent is to persuade computer manufacturers like Dell to include her new hardware in every PC.
She believes this hardware can solve a wide range of security problems at minimal expense.

Alyssa is not trying to defend against attackers who modify the hardware or extract the private key from
the co-processor. We’ll assume for all questions below that no-one has modified any hardware or stolen any
private keys.

8

20. [10 points]: Suppose that software running on a PC with Tamper-Evident Boot calls attest(“I’ve
correctly computed YETI@home result XYZ”) and sends the resulting signed message to Alyssa’s
server. The server observes that the signature on the message matches the public key in the certificate,
and that the manufacturer’s signature on the certificate is correct. On the basis of the contents of
the message and these signature checks, is it reasonable for Alyssa’s server to believe that XYZ is a
correct YETI@home result? Briefly outline why or why not.

No. Any program running on Alyssa’s hardware might have produced this message and in-
cluded an incorrect result; there’s no reason to believe the creator of the message was her appli-
cation.

21. [10 points]: Is it reasonable for Alyssa’s server to believe that the message was generated by a
PC with Alyssa’s hardware? Briefly outline why or why not.

Yes. Only a Secure Co-processor could produce a signature with a key certified by the manu-
facturer. (You have to believe that no-one has compromised any Secure Co-processors in order
to believe this, but we’re assuming no hardware attacks.)

Here’s how Alyssa intends the hardware to be used to implement Tamper-Evident boot. Every motherboard
comes with a read-only memory (ROM) that holds some boot code provided by the manufacturer. The CPU
starts executing the instructions in this ROM after a power-cycle or reset. The job of the boot code is to read
the operating system from the hard disk into main memory, and then jump into the operating system to start
executing it. Alyssa’s boot ROM does one extra step before entering the operating system: it computes a
cryptographic hash of the entire operating system it just loaded from the disk, and stores that hash into the
Magic Register.

Alyssa intends to modify the operating system software to provide a new os attest() system call to applica-
tions. os attest() takes an argument with application-supplied data, and causes the Secure Co-processor to
sign that data along with a cryptographic hash that the kernel computes over the application’s executable
file:

os_attest(data) {
struct os_msg osm;
osm.app_data = data;
osm.app_hash = cryptographic_hash(application’s original executable file);
return attest(osm);

}

The operating system would instruct the CPU hardware to prevent applications from using the attest() func-
tionality of the Secure Co-processor device.

When Alyssa’s server receives a message, it checks that scpm.cert is correctly signed by the manufacturer,
that scpm.signature is correctly signed by the public key in the certificate, that scpm.register is the hash of
an “approved operating system,” and that osm.app hash is the hash of Alyssa’s application.

9

22. [10 points]: What are the key properties an operating system would have to have in order that
it be reasonable for Alyssa’s server to consider an “approved operating system?”

If a given executable file’s hash appears in osm.app hash, then the operating system should
ensure that osm.app data is from an undisturbed execution of that executable file. This is a
pretty broad requirement, but example properties might include preventing applications from
calling attest() directly and giving each application its own protected address space using virtual
memory.

23. [10 points]: Suppose that the Magic Register did not reject all but the first write after each
reboot or reset; that is, suppose that it allowed any number of writes at any time. What new attacks
would be easy to perform as a result of this change?

A non-approved operating system could write the hash of an approved operating system to the
Magic Register, and then ask the Secure Co-processor to sign messages that claimed to be from
“correct” executions of Alyssa’s application.

End of Exam

10

6.824 Questionnaire

We’d like to ask you for feedback to help us make the course better, both for the rest of this semester and in
future years. Feel free to tear off this page and hand it in separately from the exam for anonymity.

If you could change one thing about 6.824 to make it better, what would it be?

Get the paper questions out on time.

What’s your favorite aspect of 6.824? That is, what shouldn’t we change?

The labs.

What could we do to make the paper discussions more informative and useful?

Introduce each paper, and cut off lengthy argument over uninteresting details.

Any other suggestions about the labs, lectures, TA, choice of papers, or projects?

Fewer disk file-system papers. Fewer Network Objects papers.

