Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.824 Spring 2006
Midterm Exam

Please write your name on this cover sheet and on any exars pageletach from this sheet.

Some questions may be much harder than others. Read themoaigjh first and attack them jin
the order that allows you to make the most progress. If youdimggiestion ambiguous, be suire
to write down any assumptions you make. Be neat. If we cardetstand your answer, we can’t

give you credit.

There’s a feedback form at the end of the exam which we’d lde tp fill out if you have time.

You have 80 minutes to complete this exam.

THISISAN OPEN BOOK, OPEN NOTESEXAM.

Please do not write in the boxes below.

1 (xx/15) | 2 (xx/15) | 3 (xx/40) | 4 (xx/30) | Total (xx/100)

Name:

| Lab5

The server implementation of the NFS GETATTR RPC only needgad blocks; it does not modify any
blocks. Nevertheless in Lab 5 GETATTR needs to lock the eglefile handle.

1. [5 points]: Explain what would go wrong if GETATTR did not lock.

You'd like to make your Lab 5 file system continue to work evkarie ccfs crashes (out of a set of ccfs’s
serving the same file system). You just want to ensure thabttier ccfs’'s can successfully continue using
the shared file system despite one ccfs crash. It's OK if sarbesst of the last few NFS RPCs served by
the crashed ccfs "disappear” (you do not have to enforce amd/df Echo-like prefix rules). It's clear that

it will be a problem if a ccfs crashes while holding locks. Yowdify your lock server to use leases (as in

the Echo file system) so that the lock server can take baclsa feam a crashed ccfs after the lease expires
You also modify ccfs to re-acquire each lease it holds betfiedease expires.

2. [10 points]: Are these modification sufficient? If yes, briefly argue whyna, describe a
specific situation that would cause trouble.

1 Java RMI

The paperA Distributed Object Mode for the Java System describes Java’'s RMI RPC system. The pa-
per mentions that a remote object’s server garbage-csltbet object: when there are no local or remote
references to an object, the server can discard the objdctrea its memory. Suppose that an RMI im-

plementation implements garbage collection by keepinghglesireference count in the server for each of
its objects, holding the total number of references to thjeatblocal and remote. Each client notifies an

object’s server whenever the client creates or destroyfeeeree to the object. For example, at the end of
this client code the acct object’s reference count in theesewrill be two (assuming no other clients have

references to the object):

acct = bank. | ookupAccount ("12345");
acctl = acct;

3. [5 points]: Explain a performance problem with the reference countimgementation outlined
above, and explain how to fix it.

If an RMI client crashes while holding one or more refererart object, it should nevertheless be possible
for the object’s server to eventually garbage-collect thget once no live clients have references to the
object. It's OK if the server garbage-collects an objecemefd to by a client that is alive but unreachable
due to network failure.

4. [10 points]: Suppose an object’s server has noticed that a particulathlasscrashed. Explain
how the server could eventually garbage-collect the olgjespite the possibility that the host had
references to the object when it crashed. Explain any matiifics you might need to make to the
design outlined above.

11 Porcupine

5. [10 pointg]: Consider a performance experiment like the one in FiguretBeoPorcupine papet,
but with all mail addressed to a single recipient. With thisrkioad, roughly how many messages

per second would a 30-node non-replicated Porcupine systeable to handle with policy D1? With
D2? With D4? Explain your answers.

6. [10 points]: The R (random) line in Figure 6 is slightly higher than the &l What Porcupine

design feature(s) does D1 involve that R does not? What deegraph imply about the value of
those feature(s)?

7. [10 points]: D2 has better performance in Figure 6 than D1. Why?

8. [10 points]: Section 4.3 of the Porcupine paper says that Porcupinecadgdi entire fragments:
the fragment list is really a set of pairs of nodes, and therages in a pair each hold an identical
copy of the relevant fragment. A simpler design might indtpat each message in two different
fragments. Then a user’s fragment list would be a set of nG@iser than a set of node pairs), and
when a new email message arrived, Porcupine would choosgmént on each of two lightly loaded
nodes and append the new message to both fragments. Why dagpase Porcupine didn’t take
this simpler approach? What are the advantages of havirlgidypeplicated fragments?

IV Memory Consistency

The Speedy Compute Cluster Corporation (SCCC) is desigaipgrallel computer called the SCC. The
SCC s intended to run existing parallel applications thatenoriginally written for an expensive computer
with multiple CPUs and a single memory system shared amamggt@PUs. The parallel applications have
many threads (one per CPU) that communicate intermedistdtse¢hrough the shared memory.

The SCC will consist of a set of workstations connected by aNLEach workstation will have a com-
plete copy of the shared memory in its local RAM. Each wottisités operating system will intercept the
local application thread’s loads and stores to memory, xedwte a network protocol to keep the other
workstations’ copy of the shared memory up to date.

SCCC has hired you to help them understand how their memaoitpgol will affect their customers’ pro-
grams. SCCC’s main customer spends all its time runningggbydication:

/1l these global variables are correctly initialized
/! in all CPUs’ nenories before any CPU starts

/! running the program

i nt done = 0O;

int x = 1;

cpu0(){
X =x + 1;
done = 1;

}

cpul(){
whi | e(done == 0){
/! do nothing...

}
X = X *x 3
printf("%l\n", x); [/ print x

}

Based on a student’s comment that they overheard whiledatigrs.824, SCCC’s engineers have arrived
at the following design for their shared memory protocol. aivlan application reads from memory, the
load proceeds immediately from the local RAM. When an apii;n writes to memory, the operating

system causes the application to pause, sends a WRITEMEMage<ontaining the written value, the
memory address, and the current real time to every workstincluding itself), waits for responses from

all workstations (including itself), and then lets the apgion continue.

Every workstation is always capable of receiving and prsiogsa WRITEMEM message (perhaps in an
interrupt). Each workstation processes incoming WRITEMEEksages one at a time. Each workstations
maintains a timestamp on each application memory locatidts RAM, containing the time in the WRITE-
MEM message that last updated the memory location. A wadikstanly updates a memory location in

6

response to a WRITEMEM if the time in the WRITEMEM is greathan the timestamp stored for the
memory location. A workstation always replies to a WRITEMEMen if it did not update. An application
is never allowed to directly store into the local RAM; ingleaach workstation’s local memory is only up-
dated by WRITEMEM messages. You can assume that no two WRHEM8occur at precisely the same
time (i.e. no two WRITEMEMSs will have exactly the same timagap). Each memory location’s timestamp
is initialized to zero when the program starts; this is serdtan any node’s clock.

9. [10 points]: Assume all the workstations have exactly synchronizecksloat any given instant,
they all yield the same timestamp. List the possible outfiirtal values of x) of the application shown
above.

10. [10 points]: Suppose that the workstation clocks do not agree on whatitimgsome are
ahead, others are behind. List the possible outputs (fimaésaf x) of the application shown above.

One of SCCC's engineers suggests that programs will be nikely to run correctly with the follow-
ing protocol addition. When a WRITEMEM arrives, a workstatishould compare the timestamp in the
WRITEMEM with the workstation’s clock; if the WRITEMEM's thestamp is greater than the clock time,
set the clock time to the WRITEMEM'’s timestamp.

11. [10 points]: Assuming this modification, list the possible outputs (fimallues of x) of the
application shown above.

End of Exam

6.824 Questionnaire

We'd like to ask you for feedback to help us make the coursehdtoth for the rest of this semester and in
future years. Feel free to tear off this page and hand it iarsgply from the exam for anonymity.

If you could change one thing about 6.824 to make it bettegtwiould it be?

What's your favorite aspect of 6.824? That is, wiaiuldn’'t we change?

What could we do to make the paper discussions more informatid useful?

Any other suggestions about the labs, lectures, TA, chdipajers, or projects?

