
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.824 Distributed System Engineering: Spring 2011

Quiz I Solutions



Grade histogram for Quiz 1

 0

 1

 2

 3

 4

 5

 6

 7

 8

5
1
-5

5

5
6
-6

0

6
1
-6

5

6
6
-7

0

7
1
-7

5

7
6
-8

0

8
1
-8

5

8
6
-9

0

9
1
-9

5

9
6
-1

0
0

min = 52

max = 100

median = 82

average = 82

σ = 12



6.824 Spring 2011, Quiz 1 Solutions Page 3 of 10

I Distributed Shared Memory

You are running the distributed shared memory system described in Memory Coherence in Shared Virtual
Memory Systems, by Li and Hudak. You’re using the version described in Section 3.1.

You’re writing simple lock-like code for mutual exclusion. On computer C1 you execute this program:

x = 1
if(y == 0)

print "C1 won"

On computer C2 you execute:

y = 1
if(x == 0)

print "C2 won"

You start the two programs at roughly the same time. Variables x and y start out with value zero. The
compiler generates machine code that references x and y exactly as shown in the above source code—the
compiler does not re-order variable references, or eliminate them, or reference variables except as implied
by the source code. You should assume that the manager is on a third computer, separate from C1 and C2.

Assume that the invalidate() function waits for acknowledgments indicating that all computers in the
copy set have invalidated the page. Assume that x and y are on different pages.

1. [9 points]: Which of the following outputs are possible?

A. neither computer prints anything

B. C1 prints “C1 won”, C2 prints nothing

C. C1 prints nothing, C2 prints “C2 won”

D. C1 prints “C1 won”, C2 prints “C2 won”

Answer: A, B, and C. D is not possible: if C2 prints “C2 won,” then its read of x came before C1’s write
of X, and thus C2’s assignment to y came before C1’s read of y, so C1 should have seen y==1 instead of
y==0. The “came before” reasoning depends on the distributed shared memory system invalidating readable
copies of pages before it allows a write.



6.824 Spring 2011, Quiz 1 Solutions Page 4 of 10

2. [9 points]: Suppose both x and y are on the same page, and that no other data is on that page.
You execute the programs, and see that afterwards C1 is the owner of the page, and that C2 is not in
the page’s copy set on the manager. Give an example execution in which that would happen.

Answer: C2’s program finishes before C1’s program starts.

Now suppose that invalidate() does not wait for acknowledgements; it just sends a message to each
computer in the copy set and returns. These messages are reliable; you can think of them as RPCs sent by a
background thread.

3. [9 points]: Which of the following outputs are possible, given that invalidate() does not
wait?

A. neither computer prints anything

B. C1 prints “C1 won”, C2 prints nothing

C. C1 prints nothing, C2 prints “C2 won”

D. C1 prints “C1 won”, C2 prints “C2 won”

Answer: A, B, C, and D.



6.824 Spring 2011, Quiz 1 Solutions Page 5 of 10

II Logical Clocks

Recall the logical clocks that Bayou uses to keep track of causality: to ensure that if write X could have
influenced write Y, that write Y be ordered after X. Each node maintains a logical clock. A node advances
its logical clock as time passes (perhaps incrementing every nanosecond). When node N1 sees an event
from another node, marked as having occurred at logical time T , N1 advances its logical clock so that it is
greater than T .

Ben thinks that file synchronization protocols could use logical clocks instead of version vectors, for sim-
plicity. See Section 3.1 of the Tra paper for a summary of version vectors. Ben suggests tagging each node’s
copy of a file with the logical time at which it was last modified. If node N1 modifies its copy of the file, N1

sets the file’s modification time to N1’s logical clock. When N1 synchronizes to N2, N2 accepts N1’s copy
of the file if N1’s copy has a higher logical modification time than N2’s copy. In addition, N2 advances its
own logical clock to ensure it is greater than the logical modification time of every file N1 sends it.

4. [9 points]: Describe a situation in which Ben’s logical clock scheme would produce better
behavior than using each node’s real-time clock.

Answer: If the real-time clocks on different nodes are not exactly synchronized, then file synchronization
can allow an earlier update to overwrite a later update, even if the later update is derived from the earlier
update. Logical clocks ensure that a later update that depends on an earlier update will always win.

5. [9 points]: What crucial functionality of a file synchronizer is possible with version vectors but
not possible with Ben’s logical clocks?

Answer: Logical clocks do not allow conflicting updates to be detected. Version vectors can detect con-
flicting updates.



6.824 Spring 2011, Quiz 1 Solutions Page 6 of 10

III Bayou

The Bayou paper says that, when two servers exchange Writes during anti-entropy, they tell each other
about all the Writes they know of, so that the two servers end up with exactly the same set of Writes. See
the left-hand column on page 3 of the paper.

6. [9 points]: The above property of anti-entropy usually causes the primary server (Section 6) to
order committed Writes with the same order the Writes had when they were tentative—but not always.
Describe a situation in which the primary would commit Writes in an order that is different from the
tentative order seen on some servers.

Answer: Server A produces a write time-stamped 10. Server B produces a write time-stamped 20. B
synchronizes with C, then A synchronizes with C, so C orders A’s write first. Server B synchronizes with
the primary. Server C synchronizes with the primary. Now C orders B’s write first, since it is commited
while A’s write is not committed.

Suppose, instead, that anti-entropy only exchanged Writes generated by clients of the two servers performing
anti-entropy. This might make each anti-entropy session complete faster. It would also make it harder for
all servers to learn about a given Write, since a server could only learn about the Write by performing
anti-entropy with the server that originated the Write, and not indirectly through other servers.

7. [9 points]: Describe a situation in which this change to anti-entropy would cause incorrect or
surprisingly counter-intuitive behavior in the meeting room scheduler application.

Answer: Server A generates a write time-stamped 1 asking for the meeting room at 11:00, 12:00, or 13:00.
Server B generates a write time-stamped 2 asking for the same times. Server C generates a write time-
stamped 3 asking for the same times. A synchronizes with B. B synchronizes with C. Now, even though B
and C have synchronized, they disagree about the times of meetings B and C.



6.824 Spring 2011, Quiz 1 Solutions Page 7 of 10

Now suppose that Bayou anti-entropy behaves as described in the paper, but that a Write’s timestamp is <ID
of server, local time> rather than <local time, ID of server>, and that all nodes or-
der Writes by sorting by the “ID of server” part, and breaking ties by sorting on the “local time” part. Here’s
an example of some writes in this new order:

<"server1", 27730> first write
<"server1", 27735> second write
<"server2", 20339> third write
<"server2", 30111> fourth write

8. [9 points]: Describe a situation in which this change to Write ordering would cause incorrect or
surprisingly counter-intuitive behavior in the meeting room scheduler application.

Answer: Server B might generate a write and synchronize with all other nodes (except the primary). If
server A then generates a write, all users will know that write was made later, but the system will order it
before B’s write.



6.824 Spring 2011, Quiz 1 Solutions Page 8 of 10

IV Cedar FSD

At the top of the right-hand column of page 158, the paper Reimplementing the Cedar File System Using
Logging and Group Commit says “Any pages logged in this new third, but not logged in a later third, are
written to the file name table by the logging code.” This quote is discussing the writing of modified file
name table pages from the page cache to the disk. Assume that FSD marks a cached page as “clean” when
writing it to the disk, and will not write it again unless it is subsequently modified in cache.

9. [9 points]: Describe a specific scenario in which the quoted policy results in higher performance
than writing to disk every dirty cached page that is logged in the new third.

Answer: Suppose a program performs a long sequence of operations that modify the same file name table
page over and over. It could be that the system could recycle the whole log many times, each time observing
that the page was modified in a later third, and not have to write the cached page to disk until the very end.
This argument doesn’t work for just two operations, since in that case only one write is needed anyway, after
which the cached page will be clean.



6.824 Spring 2011, Quiz 1 Solutions Page 9 of 10

V Replicated Extent Server

Alyssa makes a replicated extent server, intending eventually to use it to increase performance and fault-
tolerance. She has two extent servers, both of which hold a complete set of extents. Clients can send puts
and gets to either extent server. Each server sends any puts it receives to the other server. Here’s what some
of her extent server code looks like:

get_handler(k){
ScopedLock mx(&m);
if table contains k

return table[k]
else

return an error
}

put_handler(k, v){
ScopedLock mx(&m);
table[k] = v;
use RPC to call the other server’s put_replica(k, v)

}

put_replica_handler(k, v){
ScopedLock mx(&m);
table[k] = v;

}

Alyssa observes that most of the time her replicated extent servers works fine, but sometimes they stop
replying to RPCs.

10. [9 points]: Explain the problem, and describe a specific scenario under which the problem might
arise.

Answer: The problem is deadlock. If two clients each send a put to a different server at the same time,
each server’s put handlerwill acquire that server’s mutex. Then both servers will send a put replica
to the other server, and the put replica handlers will wait forever for the mutexes.



6.824 Spring 2011, Quiz 1 Solutions Page 10 of 10

VI 6.824

11. [4 points]: Describe the most memorable error you have made so far in one of the labs. (Provide
enough detail so that we can understand your answer.)

Answer: Incorrect RPC parameter types. Mysterious STL (map/list/string) behavior. Deadlock.
Missing locks. Weird FUSE behavior.

We would like to hear your opinions about 6.824, so please answer the following two questions. (Any
relevant answer will receive full credit!)

12. [3 points]: What is the best aspect of 6.824?

Answer: The labs.

13. [3 points]: What is the worst aspect of 6.824?

Answer: Poor FUSE documentation. This quiz. Badly written, dry, or old papers.

End of Quiz I


