
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.824 Distributed System Engineering: Spring 2016

Exam I

Write your name on this cover sheet. If you tear out any sheets, please write your name on them.
You have 80 minutes to complete this quiz.

Some questions may be much harder than others. Read them all through first and attack them in
the order that allows you to make the most progress. If you find a question ambiguous, write down
any assumptions you make. Write neatly. In order to receive full credit you must answer each
question as precisely as possible.

You may use class notes, papers, and lab material. You may read them on your laptop, but you are
not allowed to use any network. For example, you may not look at web sites or communicate with
anyone.

I (14) II (7) III (7) IV (21) V (14) VI (14) VII (21) VIII (2) Total (100)

Name:



6.824 Spring 2016, Exam 1 Page 2 of 16

I Lab 1

Ben Bitdiddle is writing a simplified version of the schedule() function for the MapReduce lab. This
function takes in an array of Tasks for a particular map or reduce phase and sends them to available
workers. The function should return once all of the tasks in this phase have been completed.

1 func (mr *Master) schedule(tasks []Task) {
2 done := 0
3
4 for _, task := range tasks {
5 go func(task Task) {
6
7 // Get an available worker and give them the task to run.
8 worker = <-mr.registerChannel
9 call(worker, "Worker.DoTask", task)

10
11 // Tell the master this task is done.
12 done++
13
14 // Reregister the worker as available.
15 mr.registerChannel <- worker
16
17 }(task)
18 }
19
20 // Wait for all of the jobs to return.
21 for {
22 if done == len(tasks) {
23 break
24 }
25 }
26
27 return
28 }

Ben notices that schedule() sometimes never finishes. However, he can see from looking at the
output files that the workers have completed all of the tasks in the phase.



6.824 Spring 2016, Exam 1 Page 3 of 16

1. [7 points]: Identify a race in Ben’s code that can cause schedule() to never return.

After fixing the race in the previous question, Ben’s code passes all of the MapReduce tests. Now
he hopes to make his implementation faster by returning an available worker to mr.registerChannel
as soon as possible, that is, before incrementing done. He implements this by moving line 15 so
it comes right after line 9. However, he notices that with this new plan schedule() never returns.

2. [7 points]: Why does this happen?



6.824 Spring 2016, Exam 1 Page 4 of 16

II GFS

Alice uses GFS (as described by Ghemawat et al.) to store the output of her MapReduce job. One
task of the MapReduce job uses a single write call to write MapReduce records to a pre-existing
“out.txt” file. That is, her job overwrites “out.txt”, which was created by a previous run of her job
(she doesn’t care about any of the old content). Unfortunately, the GFS write call returns an error.

A check application runs on another machine while the MapReduce job is attempting to write.
The check application opens “out.txt”, reads it, and closes the file. To Alice’s surprise the check
application reads the bytes Alice’s MapReduce job tried to write to “out.txt”, even though the write
reported an error to the MapReduce job. If she runs the check application again, however, it reads
the old bytes.

3. [7 points]: Describe a scenario in which this can happen.



6.824 Spring 2016, Exam 1 Page 5 of 16

III VM-FT

After reading the VM-FT paper (by Scales et al.), Ben explores running the GFS master on VM-FT.
He reasons that, without modifying the existing GFS master code, he can avoid the master being
a single point of failure. Unfortunately, he finds that replicating the master with VM-FT results in
much slower performance than with an unreplicated master: even GFS operations that merely fetch
data from the master take significantly longer with the master running on VM-FT.

4. [7 points]: Explain what causes this decrease in performance.



6.824 Spring 2016, Exam 1 Page 6 of 16

IV Lab 2

Ben is having trouble getting his Lab 2 to work. Here’s the part of his code that sends out Appen-
dEntries RPCs when a server acts as leader:

1 for {
2 // ... omitted code that waits either for a new client
3 // request or for a heartbeat interval.
4
5 for i, p := range rf.peers {
6 if i == rf.me {
7 continue
8 }
9 rf.mu.Lock()
10 if rf.state != LEADER {
11 rf.mu.Unlock()
12 break
13 }
14 n := rf.nextIndex[i]
15 args := AppendEntriesArgs{
16 // ...
17 Term: rf.currentTerm,
18 PrevLogIndex: n-1,
19 PrevLogTerm: rf.log[n-1].Term,
20 Entries: make([]LogEntry, len(rf.log[n:])),
21 }
22 copy(args.Entries, rf.log[n:])
23 rf.mu.Unlock()
24
25 var reply AppendEntriesReply
26 ok := p.Call("Raft.AppendEntries", args, &reply)
27 if ok && reply.Success {
28 rf.mu.Lock()
29 rf.nextIndex[i] = len(rf.log)
30 rf.matchIndex[i] = rf.nextIndex[i] - 1
31 rf.mu.Unlock()
32 }
33 }
34 // update commitIndex based on rf.matchIndex
35 // ...
36 }



6.824 Spring 2016, Exam 1 Page 7 of 16

5. [7 points]: Ben’s implementation often fails tests because it commits too slowly. De-
scribe a change to his code that will speed it up significantly when there are many Raft
servers.

6. [7 points]: Ben discovers that his servers often commit different commands for the
same index in the log. He discovers that this happens when the winner of an election was the
leader in a previous term; in that situation the leader’s matchIndex entries sometimes contain
inexplicably large values shortly after the election, even though Ben’s implementation sets
nextIndex and matchIndex entries to zero when a server is elected leader. Explain how the
code above can cause what Ben sees.



6.824 Spring 2016, Exam 1 Page 8 of 16

7. [7 points]: After fixing the problem identified in the previous question, Ben finds that a
leader will sometimes commit a log entry that has not been accepted by a majority of servers.
He finds that this is because the leader sets matchIndex too high after hearing a response from
an AppendEntries RPC. Explain how Ben’s code for updating nextIndex and matchIndex is
wrong.



6.824 Spring 2016, Exam 1 Page 9 of 16

V Zookeeper

In Zookeeper (as described by Hunt et al.), any server can respond to a read operation such as
GetData. In lab 3, read operations such as Get are served by the Raft leader after committing
the Get operation in Raft log. As a result, read operations in Zookeeper are fast and read operations
in lab 3 are slow.

8. [7 points]: What does Zookeeper sacrifice compared to lab 3 by allowing each server to
respond to a read operation? (Briefly explain your answer.)

A Zookeeper client C1 calls setData("z", 27) at server S1 to change the value of znode z
to 27 from its previous value of 0. No further setData calls happen after that one call. Another
client C2 calls getData("z") at server S1 and reads 27. Now S1 fails and client C2 switches to
server S2.

9. [7 points]: If client C2 calls getData("z") at server S2 does Zookeeper guarantee
that the client will observe 27 rather than 0? (Briefly explain your answer.)



6.824 Spring 2016, Exam 1 Page 10 of 16

VI FaRM

You’re building a simple auction system using FaRM to store the bids (see the paper “No compro-
mises: distributed transactions with consistency, availability, and performance”). Your application
supports just one auction, with just two bidders. You store the two current bids in FaRM, in the
bids[] array. Each user can bid any number of times with the bid() function, which returns a boolean
indicating whether the bid is the highest so far. The function’s who argument is 0 or 1, and indi-
cates which user is bidding. The return value from commit transaction() is true if the FaRM commit
protocol committed the transaction, and false if it aborted.

// each user’s bid is a distinct FaRM object.
type BidObject struct {

value int
// other stuff...

}

// bids are initialized to zero.
var bids [2]BidObject
bids[0].value = 0
bids[1].value = 0

bid(who, amount):
start_transaction()
if amount > bids[0].value && amount > bids[1].value:

ret = true
bids[who].value = amount

else:
ret = false

if commit_transaction():
return ret

else:
return false

Each bids[] array element is a separate FaRM object, with its own FaRM lock and version number.



6.824 Spring 2016, Exam 1 Page 11 of 16

10. [7 points]: Suppose the bids array starts out containing zeroes, and there are calls
to bid(0,10) and bid(1,20) on different machines at roughly the same time (and no other
activity). Could the bid(1,20) call return false? Explain your answer in terms of the commit
protocol in the paper’s Figure 4.

11. [7 points]: You can view FaRM’s VALIDATE as an optimization of LOCK for objects
that a transaction only reads. Suppose FaRM didn’t have this optimization – suppose one
were to eliminate the VALIDATE phase from Figure 4, and instead use LOCK for objects
that are just read as well as for objects that are written. Explain why this would likely hurt
performance.



6.824 Spring 2016, Exam 1 Page 12 of 16

VII TreadMarks

Consider the following program with shared variables x and y:

int x = 0;
int y = 0;

int f() {
x = 10;

}

int g() {
y = 11;

}

int p() {
print x, y

}

This is the entire program.

For these questions, please assume that the compiler generates instructions that preserve the pro-
gram order of loads and stores on each processor.

Now consider the following scenario with time running from left to right:

Processor 1: f();

Processor 2: g();

Processor 3: p();



6.824 Spring 2016, Exam 1 Page 13 of 16

12. [7 points]: For a sequentially-consistent shared-memory system please list all possible
outputs from Processor 3. (The stores to x and y complete as indicated by the time line. For
example, by the time processor 2 updates y, x has been updated.)

Consider the same program running on TreadMarks (as described by Keleher et al.):

13. [7 points]: For TreadMarks please list all possible outputs from Processor 3.



6.824 Spring 2016, Exam 1 Page 14 of 16

Consider the following slight modification: Processor 3 prints only x by calling px and Processor
4 prints only y by calling py.

int x = 0;
int y = 0;

int f() {
acquire(x_lock); // answer
x = 10;
release(x_lock); // answer

}

int g() {
acquire(y_lock); // answer
y = 11;
release(y_lock); // answer

}

int px() {
acquire(x_lock); // answer
print x;
release(x_lock); // answer

}

int py() {
acquire(y_lock); // answer
print y;
release(y_lock); // answer

}

Processor 1: f();
Processor 2: g();
Processor 3: px();
Processor 4: py();



6.824 Spring 2016, Exam 1 Page 15 of 16

14. [7 points]: Annotate f, g, px, and py in the above figure so that the program on
TreadMarks generates the same result as on a sequentially-consistent memory, but minimizes
communication overhead. (Briefly justify your annotations.)



6.824 Spring 2016, Exam 1 Page 16 of 16

VIII 6.824

15. [1 points]: Lab 2 turned out to be much harder than we anticipated. If you ran into
significant difficulties, what were they?

16. [0.5 points]: Which papers should we definitely keep for future years?

17. [0.5 points]: Is there any paper that you think we should delete?

End of Exam I


